Abstract:
A semiconductor device according to this disclosure includes: a comparator circuit; a counter circuit; and a latch circuit that stores a count value of the counter circuit at a timing when an output signal of the comparator circuit changes, the counter circuit includes: a multiphase signal generator; and a plurality of flip-flop circuits including a first-stage flip-flop and second-stage and subsequent flip-flops, the first-stage flip-flop takes in an inverted signal of an output signal of a flip-flop in a final stage and each of the second-stage and subsequent flip-flops takes in an output signal of a flip-flop in a preceding stage in synchronization with each of the plurality of clock signals, and an output signal of each of the plurality of flip-flop circuits is output as a count signal of the count value.
Abstract:
An image sensor including an ADC circuit receiving pixel data to be supplied in parallel from the a pixel array, outputting a reference signal in accordance with a digital code, comparing the reference signal and the pixel data, and outputting the digital code at which the reference signal and the pixel data have a predetermined relation, the ADC circuit including a ramp-signal generating circuit outputting a ramp signal having a gradient with respect to change of the digital code, the gradient being different between when the digital code is in a first range and when the digital code is in a second range different from the first range and an attenuator receiving the ramp signal to be supplied and outputting the reference signal having a gradient being the same between when the digital code is in the first range and when the digital code is in the second range.
Abstract:
Provided is a solid-state imaging device capable of increasing the speed of an A/D converter. The solid-state imaging device includes a successive approximation A/D converter that performs A/D conversion on an analog pixel signal. The successive approximation A/D converter includes a D/A converter, a comparator, and a successive approximation register. The D/A converter converts a digital reference signal to an analog reference signal. The successive approximation register operates based on the result of comparison by the comparator to generate the digital reference signal in such a manner that the analog reference signal approximates the analog pixel signal. The D/A converter includes a split capacitor, first capacitors, second capacitors, a switch array, a third capacitor, and a multiplexer. The first capacitors each have a first electrode coupled to the output node. The second capacitors are coupled to a second electrode of the split capacitor. The switch array is coupled to a second electrode of each of the first and second capacitors and is adapted to generate the analog reference signal at the output node by selectively applying a first reference voltage. The third capacitor is coupled to the second electrode of the split capacitor. The multiplexer is coupled to a second electrode of the third capacitor and is adapted to generate the analog reference signal at the output node by selectively applying a second reference voltage.
Abstract:
There is provided a solid-state image pickup device including ADCs that can be arranged in a limited space. The potential of a pixel signal outputted through a vertical readout line is held at a node. A plurality of capacitors are capacitively coupled to the node at which the pixel signal is held. The potential of the node is decreased in a stepwise manner by sequentially switching the voltages of the counter electrodes of the capacitors by the control of transistors. A comparator compares the potential of the node with the potential of the dark state of the pixel, and determines the upper bits of a digital value when the potential of the node becomes lower than the potential of the dark state. Following this, the conversion of the lower bits of the digital value is started. Therefore, it is possible to simplify the configuration of each ADC and arrange each ADC in a limited space.
Abstract:
The present invention provides a technique for achieving higher picture quality of a captured image by reducing noise which occurs at the time of resetting in a solid-state image sensing device and the like. A pixel array in a solid-state image sensing device includes a plurality of pixels and includes an OB pixel region and an effective pixel region. The solid-state image sensing device has a signal processing unit outputting a pixel signal of each of the pixels in the effective pixel region on the basis of the signal level of a signal output from each of the pixels. The solid-state image sensing device obtains a signal without applying a reset signal to each of the pixels in the OB pixel region, obtains the difference between the signal and a signal of a pixel in the effective pixel region, and outputs an image signal.
Abstract:
The present invention provides a small-sized inexpensive solid-state imaging apparatus. A D/A converter included in a successive comparison type A/D converter of the solid-state imaging apparatus includes a multiplexer which selects any of reference voltages VR0 to VR16 and sets it as an analog reference signal when coarse A/D conversion is performed, and which selects reference voltages VR (n−1) to VR (n+2) of the reference voltages VR0 to VR16 when fine A/C conversion is performed, and a capacitor array which generates an analog reference signal, based on the reference voltages VR (n−1) to VR (n+2) when the fine A/D conversion is performed. It is thus possible to reduce settling errors in reference voltage without using redundant capacitors.
Abstract:
A semiconductor integrated circuit device has a negative voltage generation circuit provided at each power supply circuit unit for six memory macros. Therefore, the response with respect to variation in a negative voltage is increased. In a standby mode, a negative voltage supply line for the six memory macros is connected by a switch circuit, and only a negative voltage generation circuit of one power supply circuit unit among six negative voltage generation circuits of the six power supply circuit units is rendered active. Thus, increase in standby current can be prevented.
Abstract:
The circuit area of the semiconductor device in which the transmission period and the reception period are alternately repeated is reduced. The semiconductor device includes a transmission circuit and a receiving circuit. The receiving circuit includes a gain control circuit that samples the input signal to adjust the gain of the receiving circuit during the reception period and adjusts the gain based on the sampling result during the transmission period.
Abstract:
A programmable gain amplifier provided in a semiconductor device includes a fully differential amplifier configured to amplify differential input voltages having an offset voltage. First and second correction voltages are input to a non-inverting input node and an inverting input node of the fully differential amplifier via first and second resistance elements, respectively.
Abstract:
A circuit including a first circuit, a second circuit and a controller is provided, the first circuit and the second circuit each including a sample-and-hold circuit configured to hold a level of an input signal of a specific timing and an analog-to-digital converter circuit configured to convert the level of the input signal held in the sample-and-hold circuit into digital data and to output the digital data, the controller being configured to cause the first circuit to output the level of the input signal of a first timing and to cause the second circuit to output the level of the input signal of a second timing.