Abstract:
Dendritic compounds are provided. The dendritic compounds include an anionic dendron that has a focal point having an anionic group and a linking group, and a photoreactive cation. The dendritic compounds find particular use as photoacid generators. Also provided are photoresist compositions that include such a dendritic compound, as well as methods of forming electronic devices with the photoresist compositions. The dendritic compounds, photoresist compositions and methods find particular applicability in the manufacture of semiconductor devices.
Abstract:
A photoacid generator compound has formula (1) wherein n is zero or 1; and R1-R6 are each independently hydrogen, halogen, or unsubstituted or substituted C1-20 linear or branched alkyl, C1-20 cycloalkyl, C6-20 aryl, C3-20 heteroaryl, or an acid-generating group having the structure *L-Z−M+] wherein L is an unsubstituted or substituted C1-50 divalent group; Z− is a monovalent anionic group; and M+ is an iodonium or sulfonium cation. Geminal R groups can combine to form a ring with the carbon to which they are attached, as long as no more than two such rings are formed. At least one of R1-R6 includes the acid-generating group or two germinal R groups combine to form the acid-generating group. Also described are a photoresist composition incorporating the photoacid generator compound, a coated substrate including a layer of the photoresist composition, and a method of forming an electronic device using a layer of the photoresist composition.
Abstract:
A monomer has the structure wherein R is an organic group comprising a polymerizable carbon-carbon double bond or carbon-carbon triple bond; X and Y are independently at each occurrence hydrogen or a non-hydrogen substituent; EWG1 and EWG2 are independently at each occurrence an electron-withdrawing group; p is 0, 1, 2, 3, or 4; n is 1, 2, 3, or 4; and M+ is an organic cation. A polymer prepared from monomer is useful as a component of a photoresist composition.
Abstract:
A photoresist composition comprising: a first polymer comprising a first repeating unit comprising a hydroxy-aryl group and a second repeating unit comprising an acid-labile group; a second polymer comprising a first repeating unit comprising an acid-labile group, a second repeating unit comprising a lactone group, and a third repeating unit comprising a base-soluble group, wherein the base-soluble group has a pKa of less than or equal to 12, and wherein the base-soluble group does not comprise a hydroxy-substituted aryl group; a photoacid generator; and a solvent, wherein the first polymer and the second polymer are different from each other.
Abstract:
Disclosed herein is a polymer comprising a first repeat unit and a second repeat unit, where the first repeat unit contains an acid labile group and where the second repeat unit has the structure of formula (1): wherein R1, R2 and R3 are each independently hydrogen, a halogen, a substituted or unsubstituted C1 to C12 alkyl group or C3 to C12 cycloalkyl group optionally containing an ether group, a carbonyl group, an ester group, a carbonate group, an amine group, an amide group, a urea group, a sulfate group, a sulfone group, a sulfoxide group, an N-oxide group, a sulfonate group, a sulfonamide group, or a combination thereof, a substituted or unsubstituted C6 to C14 aryl group, or C3 to C12 heteroaryl group, wherein the substitution is halogen, hydroxyl, cyano, nitro, C1 to C12 alkyl group, C1 to C12 haloalkyl group, C1 to C12 alkoxy group, C3 to C12 cycloalkyl group, amino, C2-C6 alkanoyl, carboxamido, a substituted or unsubstituted C6 to C14 aryl group, or C3 to C12 heteroaryl group; wherein R1 and R2 together optionally form a ring; and wherein n=1-3.
Abstract:
New monomer and polymer materials that comprise one or more Te atoms. In one aspect, tellurium-containing monomers and polymers are provided that are useful for Extreme Ultraviolet Lithography.
Abstract:
A photoacid generator compound having formula (I): wherein, in formula (I), groups and variables are the same as described in the specification.
Abstract:
A photoacid-generating compound has the structure where R1, R2, R3, R4, Q, and X are defined herein. The photoacid-generating compound can be used as a component of a photoresist composition, or as a monomer incorporated into a polymer useful in a photoresist composition. The photoacid-generating compound provides a desired balance of solubility and line width roughness.
Abstract:
A monomer has the structure wherein R is an organic group comprising a polymerizable carbon-carbon double bond or carbon-carbon triple bond; X and Y are independently at each occurrence hydrogen or a non-hydrogen substituent; EWG1 and EWG2 are independently at each occurrence an electron-withdrawing group; p is 0, 1, 2, 3, or 4; n is 1, 2, 3, or 4; and M+ is an organic cation. A polymer prepared from monomer is useful as a component of a photoresist composition.
Abstract:
A photoresist composition, including an acid-sensitive polymer and photoacid generator compound having Formula (I): wherein, EWG, Y, R, and M+ are the same as described in the specification.