Abstract:
A light emitting diode includes a first light emitting cell and a second light emitting cell comprising an n-type semiconductor layer, and a p-type semiconductor layer, respectively; reflection structures contacting the p-type semiconductor layers; a first contact layer in ohmic contact with the n-type semiconductor layer of the first light emitting cell; a second contact layer in ohmic contact with the n-type semiconductor layer of the second light emitting cell and connected to the reflection structure on the first light emitting cell. An n-electrode pad is connected to the first contact layer; and a p-electrode pad is connected to the reflection structure on the second light emitting cell. The first light emitting cell and the second light emitting cell are isolated from each other, and their outer side surfaces are inclined steeper than the inner sides. Therefore, a forward voltage may be lowered and light output may be improved.
Abstract:
A light emitting diode includes a substrate including a concave-convex pattern having concave portions and convex portions, a first light emitting unit disposed on the substrate, a second light emitting unit disposed on the substrate, a first wire connecting the first light emitting unit to the second light emitting unit over the concave-convex pattern, and an insulation layer disposed between the concave-convex pattern and the wire. The insulation layer has a shape corresponding to the concave-convex pattern.
Abstract:
A light emitting diode including a first light emitting cell and a second light emitting cell disposed on a substrate and spaced apart from each other to expose a surface of the substrate, a first transparent layer disposed on and electrically connected to the first light emitting cell, first connection section disposed on a portion of the first light emitting cell, a second connection section disposed on a portion of the second light emitting cell, a first interconnection and a second interconnection electrically connecting the first light emitting cell and the second light emitting cell, and an insulation layer disposed between the first and second interconnections and a side surface of the first light emitting cell.
Abstract:
A light emitting diode includes a first conductivity type semiconductor layer, a mesa disposed on the first conductivity type semiconductor layer, and including an active layer and a second conductivity type semiconductor layer, and a lower insulation layer covering the mesa and at least a portion of the first conductivity type semiconductor layer exposed around the mesa, and having a first opening for allowing electrical connection to the first conductivity type semiconductor layer and a second opening for allowing electrical connection to the second conductivity type semiconductor layer. The active layer generates light having a peak wavelength of about 500 nm or less, and the lower insulation layer includes a distributed Bragg reflector.
Abstract:
A light emitting diode chip having improved light extraction efficiency is provided. The light emitting diode chip includes a substrate, a first conductivity type semiconductor layer, a mesa, a side coating layer, and a reflection structure. The first conductivity type semiconductor layer is disposed on the substrate. The mesa includes an active layer and a second conductivity type semiconductor layer. The mesa is disposed on a partial region of the first conductivity type semiconductor layer to expose an upper surface of the first conductivity type semiconductor layer along an edge of the first conductivity type semiconductor layer. The side coating layer(s) covers a side surface of the mesa. The reflection structure is spaced apart from the side coating layer(s) and disposed on the exposed first conductivity type semiconductor layer.
Abstract:
A light-emitting element includes a light-emitting structure including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer interposed between the first conductive semiconductor layer and the second conductive semiconductor layer; a first contact electrode and a second contact electrode located on the light-emitting structure, and respectively making ohmic contact with the first conductive semiconductor layer and the second conductive semiconductor layer; an insulation layer for covering a part of the first contact electrode and the second contact electrode so as to insulate the first contact electrode and the second contact electrode; a first electrode pad and a second electrode pad electrically connected to each of the first contact electrode and the second contact electrode; and a radiation pad formed on the insulation layer, and radiating heat generated from the light-emitting structure.
Abstract:
A chip-scale package type light emitting diode is provided. In the light emitting diode according to one embodiment, an opening exposing a pad metal layer is separated from an opening of a lower insulation layer which exposes an ohmic reflection layer formed on a mesa. Therefore, it is possible to prevent solder, particularly Sn, from diffusing and contaminating the ohmic reflection layer.
Abstract:
A chip-scale package type light emitting diode includes: a first conductivity type semiconductor layer, a mesa, a second conductivity type semiconductor layer, a transparent conductive oxide layer, a dielectric layer, a lower insulation layer, a first pad metal layer, and a second pad metal layer, an upper insulation layer. The upper insulation layer covers the first pad metal layer and the second pad metal layer, and includes a first opening exposing the first pad metal layer and a second opening exposing the second pad metal layer, in which the openings of the dielectric layer include a narrow and elongated bar-shaped opening adjacent to at least one of the first openings of the lower insulation layer.
Abstract:
A chip-scale package type light emitting diode includes a first conductivity type semiconductor layer, a mesa, a second conductivity type semiconductor layer, a transparent conductive oxide layer, a dielectric layer, a lower insulation layer, a first pad metal layer, and a second pad metal layer, an upper insulation layer. The upper insulation layer covers the first pad metal layer and the second pad metal layer, and includes a first opening exposing the first pad metal layer and a second opening exposing the second pad metal layer. The openings of the dielectric layer include openings that have different sizes from one another.
Abstract:
A light emitting diode includes a first conductivity type semiconductor layer, a mesa with an active layer and a second conductivity type semiconductor layer disposed thereon, a first contact layer comprising an outer contact portion contacting the first conductivity type semiconductor layer near an edge thereof and an inner contact portion contacting the first conductivity type semiconductor layer in a region surrounded by the outer contact portion; a second contact layer disposed on the mesa and contacting the second conductivity type semiconductor layer; a first insulation layer covering the mesa, insulating the first contact layer, and exposing the first conductivity type semiconductor layer for the outer contact portion and the inner contact portion to contact the first conductivity type semiconductor layer, wherein the outer contact portion and the first insulation layer alternately contact the first conductivity type semiconductor layer along a side surface of the mesa.