Abstract:
A display apparatus is provided. The display apparatus includes a display substrate, a first micro LED module disposed on the display substrate, and a second micro LED module disposed on the display substrate and adjacent to the first micro LED module. The first micro LED module and the second micro LED module have side surfaces facing each other. The side surfaces facing each other of the first micro LED module and the second micro LED module are inclined in an identical direction with respect to an upper surface of the display substrate.
Abstract:
A display apparatus includes a display substrate, first micro LED modules arranged on the display substrate, and at least one second micro LED module disposed between the first micro LED modules. Each of the first micro LED modules includes a first substrate and micro LEDs disposed on the first substrate. The second micro LED module includes a second substrate and micro LEDs disposed on the second substrate. The second substrate bridges two adjacent first substrates.
Abstract:
A nitride semiconductor light emitting device may include: a semiconductor layer; an active layer; a second semiconductor layer; mesa regions formed to expose the semiconductor layer; a second electrode formed under the second semiconductor layer; a cover metal layer formed at a corner under the second semiconductor layer to overlap part of the second electrode; an insulating layer formed under the cover metal layer, the second electrode, and the mesa regions and having openings to expose the semiconductor layer; a first electrode disposed in the openings and over a conductive substrate; and a second electrode pad formed over the exposed cover metal layer, wherein when the width a of the second electrode between adjacent mesa regions and the width b of the second electrode between a mesa region at the edge and an extension line of the cover metal layer at the corner have a relation of a>b.
Abstract:
A light emitting diode includes a substrate including a concave-convex pattern having concave portions and convex portions, a first light emitting unit disposed on the substrate, a second light emitting unit disposed on the substrate, a first wire connecting the first light emitting unit to the second light emitting unit over the concave-convex pattern, and an insulation layer disposed between the concave-convex pattern and the wire. The insulation layer has a shape corresponding to the concave-convex pattern.
Abstract:
A display apparatus includes a display substrate, and light emitting devices arranged on an upper surface of the display substrate. At least one of the light emitting devices includes a first LED unit including a first light emitting stack, a second LED unit including a second light emitting stack, and a third LED unit including a third light emitting stack. Each of the first to third light emitting stacks includes a first conductivity type semiconductor layer and a second conductivity type semiconductor layer. the first conductivity type semiconductor layer and the second conductivity type semiconductor layer in each of the first to third light emitting stacks are stacked in a horizontal direction with respect to the upper surface of the display substrate. At least one of the second conductivity type semiconductor layers in the first to third light emitting stacks is divided into two regions.
Abstract:
A light-emitting element includes a light-emitting structure including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer interposed between the first conductive semiconductor layer and the second conductive semiconductor layer; a first contact electrode and a second contact electrode located on the light-emitting structure, and respectively making ohmic contact with the first conductive semiconductor layer and the second conductive semiconductor layer; an insulation layer for covering a part of the first contact electrode and the second contact electrode so as to insulate the first contact electrode and the second contact electrode; a first electrode pad and a second electrode pad electrically connected to each of the first contact electrode and the second contact electrode; and a radiation pad formed on the insulation layer, and radiating heat generated from the light-emitting structure.
Abstract:
A display apparatus includes a display substrate, and light emitting devices arranged on an upper surface of the display substrate. At least one of the light emitting devices includes a first LED unit including a first light emitting stack, a second LED unit including a second light emitting stack, and a third LED unit including a third light emitting stack. The second LED unit is disposed between the first LED unit and the third LED unit. Each of the first to third light emitting stacks includes a first conductivity type semiconductor layer and a second conductivity type semiconductor layer. The first conductivity type semiconductor layer and the second conductivity type semiconductor layer in each of the first to third light emitting stacks are stacked in a horizontal direction with respect to the upper surface of the display substrate.
Abstract:
A light emitting device includes a first bonding pad configured to be mounted to a substrate, a first electrode electrically connected to the first bonding pad, a first conductive type semiconductor layer having a middle area disposed between two, opposing end areas, a second conductive type semiconductor layer disposed on the first conductive type semiconductor layer and connected to the first electrode; and a first contact portion and a plurality of second contact portions disposed on the first conductive type semiconductor layer, in which the first contact portion is disposed adjacent one end area of the first conductive type semiconductor layer, the second contact portions are disposed in the middle area of the first conductive type semiconductor layer, and the first bonding pad exposes at least one of the second contact portion.
Abstract:
A light emitting device for a display including a light emitting structure including a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer, and having a side surface exposing the active layer, in which a portion of the second conductivity type semiconductor layer and the active layer along an edge of the light emitting structure is insulative in a thickness direction to define an insulation region, and the insulation region includes implanted ions.
Abstract:
A lighting apparatus includes a light emitting diode, in which the light emitting diode includes an n-type nitride semiconductor layer, an active layer located on the n-type nitride semiconductor layer, and a p-type nitride semiconductor layer located on the active layer. The light emitting diode emits light that varies from yellow light to white light depending on a driving current.