Abstract:
A data transmission and reception system may include: a data transmission apparatus configured to generate N Tx signals having discrete levels using N binary data, and output the N Tx signals to N single-ended signal lines, respectively, where N is a natural number equal to or larger than 2; and a data reception apparatus configured to receive the N Tx signals transmitted in parallel through the single-ended signal lines, and restore the N binary data by comparing the received N Tx signals to each other.
Abstract:
A phase mixing circuit includes a first mixing unit configured to mix phases of first and second clocks at a predetermined ratio, and generate a first mixed signal; a second mixing unit configured to mix phases of an inverted signal of the first clock and an inverted signal of the second clock at the predetermined ratio, and generate a second mixed signal; and an output unit configured to generate an output signal based on of the first and second mixed signals.
Abstract:
A test circuit of a semiconductor apparatus includes a test temperature information generation section, an erroneous operation prevention unit, and a refresh cycle adjustment unit. The test temperature information generation section outputs test temperature information having a plurality of bits in a test operation mode, and irregularly changes logic values of the plurality of bits and transition time points of the logic values. The erroneous operation prevention unit generates a temperature compensation signal in response to the test temperature information. The refresh cycle adjustment unit changes a cycle of a reference refresh signal in response to the temperature compensation signal, and generates a refresh signal.
Abstract:
An address distribution apparatus includes an address distributor. The address distributor distributes addresses of a plurality of memory cells in a memory device to prevent at least two successive write operations from being applied to at least two adjacent memory cells sharing any one of a plurality of word lines or any one of a plurality of bit lines among the plurality of memory cells. The at least two write operations are performed in response to write requests outputted from a host, respectively.
Abstract:
A semiconductor device may be provided. The semiconductor device may be configured to shift storage positions of data and error information on the data to store the data into shifted storage positions based on the address signals having a certain combination being inputted a predetermined number of times.
Abstract:
A memory apparatus and a method of wear-leveling of a memory apparatus may be provided. The memory apparatus may include a memory having a plurality of storage blocks and a plurality of free blocks. The memory apparatus may include a memory controller configured for performing a first global wear-leveling to move data of a first storage block, which is a hot block among the storage blocks, to a first free block among the free blocks. The memory apparatus may include a memory controller configured for remapping a result of a logic operation of a logical page address of each of the pages in the first storage block and a first security refresh key to a physical page address of each of the pages in the first free block.
Abstract:
A semiconductor memory device includes a semiconductor circuit substrate having a chip pad forming region. A pair of data lines are formed on the semiconductor circuit substrate at one side of the chip pad region. The pair of data lines extend along a direction that the chip pad region of the semiconductor circuit substrate extends. The pair of data lines are arranged to be adjacent to each other and receive a pair of differential data signals. A power supply line is formed on the semiconductor circuit substrate at the other side of the chip pad region. The power supply line extends along the direction that the chip pad region of the semiconductor circuit substrate extends, and the power supply line receives power.
Abstract:
A semiconductor memory device includes a semiconductor circuit substrate having a chip pad forming region. A pair of data lines are formed on the semiconductor circuit substrate at one side of the chip pad region. The pair of data lines extend along a direction that the chip pad region of the semiconductor circuit substrate extends. The pair of data lines are arranged to be adjacent to each other and receive a pair of differential data signals. A power supply line is formed on the semiconductor circuit substrate at the other side of the chip pad region. The power supply line extends along the direction that the chip pad region of the semiconductor circuit substrate extends, and the power supply line receives power.
Abstract:
A delay circuit includes a clock delay line, a command delay line, a delay line control block, and a shared shift register block. The clock delay line delays an input clock and generates a delayed clock. The command delay line delays a command signal and generates a delayed command signal. The delay line control block generates a control signal according to a result of comparing phases of a feedback clock which is generated as the delayed clock is delayed by a modeled delay value and the input clock. The shared shift register block sets delay amounts of the clock delay line and the command delay line to be substantially the same with each other, in response to the control signal.
Abstract:
A clock generation circuit includes a delay line, which delays an input clock and generates a delayed clock, a delay modeling unit, which delays the delayed clock by a modeled delay value and generates a feedback clock, a phase detection unit, which compares phases of the input clock and the feedback clock and generates a phase detection signal, a filter unit, which receives the phase detection signal and generates phase information, generates an update signal when a difference between the numbers of phase detection signals with a first and a second level generated is greater than or equal to a threshold value, and generates the update signal after a lapse of a predetermined time when the difference is less than the threshold value, and a delay line control unit, which sets a delay value of the delay line in response to the update signal and the phase information.