Abstract:
A method of fabricating LEDs from a wafer comprising a substrate and epitaxial layers and having a substrate side and a epitaxial side, said method comprising: (a) applying a laser beam across at least one of said substrate side or said epitaxial side of said wafer to define at least one laser-scribed recess having a laser-machined surface; and (b) singulating said wafer along said laser-scribed recess to form singulated LEDs, said singulated LEDs having a top surface, a bottom surface, and a plurality of sidewalls, at least one of said sidewalls comprising at least a first portion comprising at least a portion of said laser-machined surface.
Abstract:
High-performance light-emitting diode together with apparatus and method embodiments thereto are disclosed. The light emitting diode devices emit at a wavelength of 390 nm to 470 nm or at a wavelength of 405 nm to 430 nm. Light emitting diode devices are characterized by having a geometric relationship (e.g., aspect ratio) between a lateral dimension of the device and a vertical dimension of the device such that the geometric aspect ratio forms a volumetric light emitting diode that delivers a substantially flat current density across the device (e.g., as measured across a lateral dimension of the active region). The light emitting diode devices are characterized by having a current density in the active region of greater than about 175 Amps/cm2.
Abstract:
High-performance light-emitting diode together with apparatus and method embodiments thereto are disclosed. The light emitting diode devices emit at a wavelength of 390 nm to 470 nm or at a wavelength of 405 nm to 430 nm. Light emitting diode devices are characterized by having a geometric relationship (e.g., aspect ratio) between a lateral dimension of the device and a vertical dimension of the device such that the geometric aspect ratio forms a volumetric light emitting diode that delivers a substantially flat current density across the device (e.g., as measured across a lateral dimension of the active region). The light emitting diode devices are characterized by having a current density in the active region of greater than about 175 Amps/cm2.
Abstract:
Small LED sources with high brightness and high efficiency apparatus including the small LED sources and methods of using the small LED sources are disclosed.
Abstract:
Embodiments of the present disclosures are directed to improved approaches for achieving high-performance light extraction from a Group III-nitride volumetric LED chips. More particularly, disclosed herein are techniques for achieving high-performance light extraction from a Group III-nitride volumetric LED chip using surface and sidewall roughening.