Abstract:
An integrated circuit includes a substrate with an active area, a first insulating layer, a second insulating layer, and a phase-change material. The integrated circuit further includes a heating element in an L-shape, with a long side in direct physical contact with the phase-change material and a short side in direct physical contact with a via. The heating element is surrounded by first, second, and third insulating spacers, with the first insulating spacer having a planar first sidewall in contact with the long side of the heating element, a convex second sidewall, and a planar bottom face in contact with the short side of the heating element. The second and third insulating spacers are in direct contact with the first insulating spacer and the long side of the heating element.
Abstract:
A phase change memory includes an L-shaped resistive element having a first part that extends between a layer of phase change material and an upper end of a conductive via and a second part that rests at least partially on the upper end of the conductive via and may further extend beyond a peripheral edge of the conductive via. The upper part of the conductive via is surrounded by an insulating material that is not likely to adversely react with the metal material of the resistive element.
Abstract:
A strained semiconductor layer is produced from a semiconductor layer extending on an insulating layer. A thermal oxidization is performed on the semiconductor layer across its entire thickness to form two bars extending in a direction of a transistor width. Insulating trenches are formed in a direction of a transistor length. A strain of the strained semiconductor layer is induced in one implementation before the thermal oxidation is performed. Alternatively, the strain is induced after the thermal oxidation is performed. The insulating trenches serve to release a component of the strain extending in the direction of transistor width. A component of the strain extending in the direction of transistor length is maintained. The bars and trenches delimit an active area of the transistor include source, drain and channel regions.
Abstract:
An insulation wall separating transistors formed in a thin semiconductor layer resting on an insulating layer laid on a semiconductor substrate, this wall being formed of an insulating material and comprising a wall crossing the thin layer and the insulating layer and penetrating into the substrate, and lateral extensions extending in the substrate under the insulating layer.
Abstract:
Methods and structures for forming strained-channel finFETs are described. Fin structures for finFETs may be formed in two epitaxial layers that are grown over a bulk substrate. A first thin epitaxial layer may be cut and used to impart strain to an adjacent channel region of the finFET via elastic relaxation. The structures exhibit a preferred design range for increasing induced strain and uniformity of the strain over the fin height.
Abstract:
Methods and structures for forming uniaxially-strained, nanoscale, semiconductor bars from a biaxially-strained semiconductor layer are described. A spatially-doubled mandrel process may be used to form a mask for patterning dense, narrow trenches through the biaxially-strained semiconductor layer. The resulting slicing of the biaxially-strained layer enhances carrier mobility and can increase device performance.
Abstract:
The disclosure concerns a method of stressing a semiconductor layer comprising: depositing, over a semiconductor on insulator (SOI) structure having a semiconductor layer in contact with an insulating layer, a stress layer; locally stressing said semiconductor layer by forming one or more openings in said stress layer, said openings being aligned with first regions of said semiconductor layer in which transistor channels are to be formed; and deforming second regions of said insulating layer adjacent to said first regions by temporally decreasing, by annealing, the viscosity of said insulator layer.
Abstract:
A method includes forming a plurality of fin elements above a substrate. A mask is formed above the substrate. The mask has an opening defined above at least one selected fin element of the plurality of fin elements. An ion species is implanted into the at least one selected fin element through the opening to increase its etch characteristics relative to the other fin elements. The at least one selected fin element is removed selectively relative to the other fin elements.
Abstract:
Methods and structures for forming strained-channel FETs are described. A strain-inducing layer may be formed under stress in a silicon-on-insulator substrate below the insulator. Stress-relief cuts may be formed in the strain-inducing layer to relieve stress in the strain-inducing layer. The relief of stress can impart strain to an adjacent semiconductor layer. Strained-channel, fully-depleted SOI FETs and strained-channel finFETs may be formed from the adjacent semiconductor layer. The amount and type of strain may be controlled by etch depths and geometries of the stress-relief cuts and choice of materials for the strain-inducing layer.
Abstract:
A method of making a semiconductor device includes forming a first spacer for at least one gate stack on a first semiconductor material layer, and forming a respective second spacer for each of source and drain regions adjacent the at least one gate. Each second spacer has a pair of opposing sidewalls and an end wall coupled thereto. The method includes filling the source and drain regions with a second semiconductor material while the first and second spacers provide confinement.