Abstract:
The invention relates to a method for manufacturing a transistor comprising the preparation of a stack of layers of the semiconductor on insulator type comprising at least one substrate on which an insulating layer and an initial semiconductor layer are successively disposed. The method includes the formation of at least one oxide pad extending from a top face of the insulating layer, the formation of an additional layer made from semiconductor material covering the oxide pad and intended to form a channel for the transistor, the formation of a gate stack above the oxide pad, and the formation of a source and drain on either side of the gate stack.
Abstract:
A method of fabrication, including the steps for supplying a substrate including a layer of semiconductor material covered by a sacrificial gate including a sacrificial gate insulator including a middle part, and edges covered by sacrificial spacers and having a thickness tox; removal of the sacrificial gate insulator and the sacrificial gate material; formation of a conformal deposition of thickness thk of dielectric material inside of the groove formed in order to form a gate insulator, with tox>thk≧tox/2; formation of a gate electrode within the groove; removal of the sacrificial spacers so as to open up edges of the gate insulator layer; formation of spacers on the edges of the gate insulator layer on either side of the gate electrode, these spacers having a dielectric constant at the most equal to 3.5.
Abstract:
A MOS transistor has a gate insulator layer that is made of a material of high dielectric constant deposited on a substrate. The gate insulator layer extends, with a constant thickness, under and beyond a gate stack. Spacers of low dielectric constant are formed on either side of the gate stack and vertically separated from the substrate by the extension of the gate insulator layer beyond the sides of the gate stack. The spacers of low dielectric constant are preferably air spacers.
Abstract:
A method for manufacturing a transistor includes forming a stack of semiconductor on insulator type layers including at least one substrate, surmounted by a first insulating layer and an active layer to form a channel for the transistor; forming a gate stack on the active layer; producing a source and a drain including forming, on either side of the gate stack, cavities by at least one step of etching the active layer, the first insulating layer, and part of the substrate selectively to the gate stack to remove the active layer, the first insulating layer, and a portion of the substrate outside regions situated below the gate stack; forming a second insulating layer on the bared surfaces of the substrate, to form a continuous insulating layer with the first insulating layer; baring of the lateral ends of the channel; and the filling of the cavities by epitaxy.
Abstract:
The invention relates to a method for manufacturing a transistor comprising the preparation of a stack of layers of the semiconductor on insulator type comprising at least one substrate on which an insulating layer and an initial semiconductor layer are successively disposed. The method includes the formation of at least one oxide pad extending from a top face of the insulating layer, the formation of an additional layer made from semiconductor material covering the oxide pad and intended to form a channel for the transistor, the formation of a gate stack above the oxide pad, and the formation of a source and drain on either side of the gate stack.
Abstract:
There is provided a method for manufacturing a transistor from a stack including at least one gate pattern comprising at least one flank, the method including forming at least one gate spacer over at least the flank of the gate pattern; and reducing, after a step of exposure of the stack to a temperature greater than or equal to 600° C., of a dielectric permittivity of the at least one gate spacer, the reducing including at least one ion implantation in a portion at least of a thickness of the at least one gate spacer.
Abstract:
A MOS transistor including, above a gate insulator, a conductive gate stack having a height, a length, and a width, this stack having a lower portion close to the gate insulator and an upper portion, wherein the stack has a first length in its lower portion, and a second length shorter than the first length in its upper portion.
Abstract:
A method is provided for producing a semiconductor layer having at least two different thicknesses from a stack of the semiconductor on insulator type including at least one substrate on which an insulating layer and a first semiconductor layer are successively disposed, the method including etching the first layer so that said layer is continuous and includes at least one first region having a thickness less than that of at least one second region; oxidizing the first layer to form an electrically insulating oxide film on a surface thereof so that, in the first region, the oxide film extends as far as the insulating layer; partly removing the oxide film to bare the first layer outside the first region; forming a second semiconductor layer on the stack, to form, with the first layer, a third continuous semiconductor layer having a different thickness than that of the first and second regions.
Abstract:
A semiconductive device is fabricated by forming, within a semiconductive substrate, at least one continuous region formed of a material having a non-uniform composition in a direction substantially perpendicular to the thickness of the substrate.
Abstract:
A method for manufacturing a transistor includes forming a stack of semiconductor on insulator type layers including at least one substrate, surmounted by a first insulating layer and an active layer to form a channel for the transistor; forming a gate stack on the active layer; producing a source and a drain including forming, on either side of the gate stack, cavities by at least one step of etching the active layer, the first insulating layer, and part of the substrate selectively to the gate stack to remove the active layer, the first insulating layer, and a portion of the substrate outside regions situated below the gate stack; forming a second insulating layer on the bared surfaces of the substrate, to form a continuous insulating layer with the first insulating layer; baring of the lateral ends of the channel; and the filling of the cavities by epitaxy.