Abstract:
A process for manufacturing a Schottky barrier field-effect transistor is provided. The process includes: providing a structure including a control gate and a semiconductive layer positioned under the gate and having protrusions that protrude laterally with respect to the gate; anisotropically etching at least one of the protrusions by using the control gate as a mask, so as to form a recess in this protrusion, this recess defining a lateral face of the semiconductive layer; depositing a layer of insulator on the lateral face of the semiconductive layer; and depositing a metal in the recess on the layer of insulator so as to form a contact of metal/insulator/semiconductor type between the deposit of metal and the lateral face of the semiconductive layer.
Abstract:
A method of fabrication, including the steps for supplying a substrate including a layer of semiconductor material covered by a sacrificial gate including a sacrificial gate insulator including a middle part, and edges covered by sacrificial spacers and having a thickness tox; removal of the sacrificial gate insulator and the sacrificial gate material; formation of a conformal deposition of thickness thk of dielectric material inside of the groove formed in order to form a gate insulator, with tox>thk≧tox/2; formation of a gate electrode within the groove; removal of the sacrificial spacers so as to open up edges of the gate insulator layer; formation of spacers on the edges of the gate insulator layer on either side of the gate electrode, these spacers having a dielectric constant at the most equal to 3.5.
Abstract:
Method to strain a channel zone of a transistor of the semiconductor on insulator type transistor that makes use of an SMT stress memorization technique in which regions located under the insulation layer of the substrate (FIG. 6) are amorphized, before the transistor gate is made.
Abstract:
A method is provided for producing a microelectronic device with plural zones made of a metal and semiconductor compound, from semiconductor zones made of different semiconductor materials, and on which a thin semiconductor layer is formed prior to the deposition of a metal layer so as to lower the nucleation barrier of the semiconductor zones when reacting with the metal layer.
Abstract:
A method is provided for producing a semiconductor layer having at least two different thicknesses from a stack of the semiconductor on insulator type including at least one substrate on which an insulating layer and a first semiconductor layer are successively disposed, the method including etching the first layer so that said layer is continuous and includes at least one first region having a thickness less than that of at least one second region; oxidizing the first layer to form an electrically insulating oxide film on a surface thereof so that, in the first region, the oxide film extends as far as the insulating layer; partly removing the oxide film to bare the first layer outside the first region; forming a second semiconductor layer on the stack, to form, with the first layer, a third continuous semiconductor layer having a different thickness than that of the first and second regions.
Abstract:
There is provided a method for manufacturing a transistor from a stack including at least one gate pattern comprising at least one flank, the method including forming at least one gate spacer over at least the flank of the gate pattern; and reducing, after a step of exposure of the stack to a temperature greater than or equal to 600° C., of a dielectric permittivity of the at least one gate spacer, the reducing including at least one ion implantation in a portion at least of a thickness of the at least one gate spacer.
Abstract:
A method includes making a gate stack on the surface of an active zone, including depositing a first dielectric layer; depositing a gate conductive layer; depositing a first metal layer; depositing a second metal layer; depositing a second dielectric layer; partially etching the gate stack for the formation of a gate zone on the active zone; making insulating spacers on either side of the gate zone on the active zone; making source and drain electrodes zones; making silicidation zones on the surface of the source and drain zones; etching, in the gate zone on the active zone, the second dielectric layer and the second metal layer with stopping on the first metal layer, so as to form a cavity between the insulating spacers; making a protective plug at the surface of the first metal layer of the gate zone on the active zone, where the protective plug fills the cavity.
Abstract:
A MOS transistor including, above a gate insulator, a conductive gate stack having a height, a length, and a width, this stack having a lower portion close to the gate insulator and an upper portion, wherein the stack has a first length in its lower portion, and a second length shorter than the first length in its upper portion.
Abstract:
Fabrication of a microelectronic device on a semiconductor on insulator type substrate, the device being provided with a transistor of a given type, the channel structure of which is formed from semiconducting bar(s), a dielectric area different from the insulating layer of the substrate being provided to replace the insulating layer, facing the transistor channel structure, specifically for this given type of transistor.
Abstract:
Fabrication of a microelectronic device on a semiconductor on insulator type substrate, the device being provided with a transistor of a given type, the channel structure of which is formed from semiconducting bar(s), a dielectric area different from the insulating layer of the substrate being provided to replace the insulating layer, facing the transistor channel structure, specifically for this given type of transistor.