Abstract:
A localized substrate heater is configured to apply variable substrate heating to an integrated bipolar transistor. The base-to-emitter voltage (Vbe) of that bipolar transistor a varying substrate temperature settings is sensed, with the sensed Vbe processed to determine temperature coefficients of the bipolar transistor. The bipolar transistor may, for example, be a circuit component of an integrated temperature sensing circuit.
Abstract:
An embodiment circuit includes a first reference source configured to provide a first reference signal to an analog-to-digital convertor (ADC). The circuit also includes a filter coupled to an output of the first reference source and configured to filter the first reference signal to produce a filtered first reference signal. The circuit further includes a second reference source coupled to an output of the filter. The second reference source is configured to provide a second reference signal to the ADC, and the second reference signal is generated based on the filtered first reference signal.
Abstract:
A digital-to-analog converter has an output. An analog-to-digital converter senses a voltage at the output of the digital-to-analog converter and generates a digital voltage signal. A source mismatch estimator processes the digital voltage signal to output an error signal indicative of current source mismatch within the digital-to-analog converter. An error code generator generates a digital calibration signal from the error signal. The digital calibration signal is converted by a redundancy digital-to-analog converter to an analog compensation signal for application to the output of analog-to-digital converter to nullify effects of the current source mismatch.
Abstract:
An asynchronous SAR ADC converts an analog signal into a series of digital pulses in an efficient, low power manner. In synchronous SAR ADC circuits, a separate and cumbersome clock signal is used to trigger the internal circuitry of the SAR ADC. Instead of triggering the components of the SAR DAC synchronously with a clock signal, the asynchronous solution uses its own internal signals to trigger its components in an asynchronous cyclic manner. Further, in order to increase efficiency and guard against circuit failures due to difficulties arising from transient signals, the asynchronous SAR ADC may also include a delay circuit for introducing a variable delay to the SAR ADC cycle.
Abstract:
The invention concerns a circuit comprising: a first transistor (102) having first and second main current nodes, and a gate node adapted to receive a first timing signal (CLK) for causing the first transistor to transition between conducting and non-conducting states; a biasing circuit (108) coupled to a further node of said first transistor; and a control circuit (110) adapted to control said biasing circuit to apply a first control voltage (VCTRL) to said further node to adjust the timing of at least one of said transitions.
Abstract:
A delay circuit includes first and second transistors and a biasing circuit. The first transistor has a control node coupled to an input node of the delay circuit, a first main current node coupled to a first supply voltage, and a second main current node coupled to an output node of the delay circuit. A second transistor has a control node coupled to the input node, a first main current node coupled to a second supply voltage, and a second main current node coupled to the output node. The biasing circuit is configured to generate first and second differential control voltages , to apply the first differential control voltage to a further control node of the first transistor and to apply the second differential control voltage to a further control node of the second transistor.
Abstract:
A process and temperature variation operating condition that is globally applicable to an integrated circuit die is sensed in a core circuit region to generate a global process and temperature compensation signal. A voltage variation operating condition that is locally applicable to an input/output circuit within a peripheral circuit region of the integrated circuit die is sensed to generate a local voltage compensation signal. More specifically, the localized voltage operating condition is generated as a function of a measured difference in frequency between a first clock signal generated in the peripheral circuit region in response to a supply voltage subject to voltage variation and a second clock signal generated in the core circuit region in response to a fixed bandgap reference voltage. The operation of the input/output circuit is then altered in response to the global process and temperature compensation signal and in response to the local voltage compensation signal.
Abstract:
Disclosed herein is a digital to analog converter including a first dynamic latch receiving a data signal and an inverse of the data signal. The first dynamic latch is clocked by a clock signal and configured to generate first and second quad switching control signals as a function of the data signal and the inverse of the data signal. A second dynamic latch receives the data signal and the inverse of the data signal, is clocked by an inverse of the clock signal, and is configured to generate third and fourth quad switching control signals as a function of the data signal and the inverse of the data signal. A quad switching bit cell is configured to generate an analog representation of the data signal as a function of the first, second, third, and fourth quad switching signals.
Abstract:
An embodiment circuit includes a first reference source configured to provide a first reference signal to an analog-to-digital convertor (ADC). The circuit also includes a filter coupled to an output of the first reference source and configured to filter the first reference signal to produce a filtered first reference signal. The circuit further includes a second reference source coupled to an output of the filter. The second reference source is configured to provide a second reference signal to the ADC, and the second reference signal is generated based on the filtered first reference signal.
Abstract:
An embodiment circuit includes a first reference source configured to provide a first reference signal to an analog-to-digital convertor (ADC). The circuit also includes a filter coupled to an output of the first reference source and configured to filter the first reference signal to produce a filtered first reference signal. The circuit further includes a second reference source coupled to an output of the filter. The second reference source is configured to provide a second reference signal to the ADC, and the second reference signal is generated based on the filtered first reference signal.