Abstract:
Provided are a dielectric material including a compound represented by Formula 1, a device including the same, and a method of preparing the dielectric material: (1−x)KaNabNbO3.xM(AcSbd)O3 [Formula 1] wherein, in Formula 1, M is a Group 2 element, A is a trivalent element, and 0
Abstract:
Provided are a dielectric, a capacitor and a semiconductor device that include the dielectric, and a method of preparing the dielectric, the dielectric including: a composition represented by Formula 1; and an oxide including a perovskite type crystal structure having a polar space group or a non-polar space group other than a Pbnm space group: AxByO3-δ wherein, in Formula 1, A is a monovalent, divalent, or trivalent cation, B is a trivalent, tetravalent, or pentavalent cation, and 0.5≤x≤1.5, 0.5≤y≤1.5, and 0≤δ≤0.5.
Abstract:
An electrical conductor includes a substrate; and a first conductive layer disposed on the substrate and including a plurality of metal oxide nanosheets, wherein adjacent metal oxide nanosheets of the plurality of metal oxide nanosheets contact to provide an electrically conductive path between the contacting metal oxide nanosheets, wherein the plurality of metal oxide nanosheets include an oxide of Re, V, Os, Ru, Ta, Ir, Nb, W, Ga, Mo, In, Cr, Rh, Mn, Co, Fe, or a combination thereof, and wherein the metal oxide nanosheets of the plurality of metal oxide nanosheets have an average lateral dimension of greater than or equal to about 1.1 micrometers. Also an electronic device including the electrical conductor, and a method of preparing the electrical conductor.
Abstract:
A dielectric material, a method of manufacturing thereof, and a dielectric device and an electronic device including the same. A dielectric material includes a layered metal oxide including a first layer having a positive charge and a second layer having a negative charge which are laminated, a monolayer nanosheet exfoliated from the layered metal oxide, a nanosheet laminate of the monolayer nanosheets, or a combination thereof, wherein the dielectric material includes a two-dimensional layered material having a two-dimensional crystal structure and the two-dimensional layered material is represented by Chemical Formula 1.
Abstract:
An electrical conductor includes a substrate; and a first conductive layer disposed on the substrate and including a plurality of metal oxide nanosheets, wherein adjacent metal oxide nanosheets of the plurality of metal oxide nanosheets contact to provide an electrically conductive path between the contacting metal oxide nanosheets, wherein the plurality of metal oxide nanosheets include an oxide of Re, V, Os, Ru, Ta, Ir, Nb, W, Ga, Mo, In, Cr, Rh, Mn, Co, Fe, or a combination thereof, and wherein the metal oxide nanosheets of the plurality of metal oxide nanosheets have an average lateral dimension of greater than or equal to about 1.1 micrometers. Also an electronic device including the electrical conductor, and a method of preparing the electrical conductor.
Abstract:
A method of preparing a conductor including a first conductive layer including a plurality of metal oxide nanosheets, the method including: preparing a coating liquid including a plurality of metal oxide nanosheets, wherein an intercalant is attached to a surface of the nanosheets, applying the coating liquid to a substrate to provide a first conductive layer including a plurality of metal oxide nanosheets, and performing a surface treatment on the first conductive layer to remove at least a portion of the intercalant.
Abstract:
An electrically conductive thin film includes a compound represented by Chemical Formula 1 and having a layered crystal structure: MeB2 Chemical Formula 1 wherein, Me is Au, Al, Ag, Mg, Ta, Nb, Y, W, V, Mo, Sc, Cr, Mn, Os, Tc, Ru, Fe, Zr, or Ti.
wherein in Formula 1, M1 is a cationic dopant in Sr site with a valance of a+; a is 1, 2 or 3; M2 is a cationic dopant in Zr site with a valance of b+; b is 2, 3, 4 or 5; X is an anion dopant in O site with a valence of c−; c is 1, 2, or 3; 0≤h≤2, 0≤x≤2, 0≤y≤1, 0≤z≤0.5, x+y+z+h≥0, d=(2−a)*x+(4−b)*y−(2−c)*z−h, and d≥0.
Abstract:
Provided are a dielectric material including a composite represented by Formula 1, a device including the same, and a method of preparing the dielectric material: xAB3.(1−x)(BiaNab)TiO3 [Formula 1] wherein, in Formula 1, A is at least one element selected from among lanthanum group elements, rare earth metal elements, and alkaline earth metal elements, B is at least one element selected from transition metal elements, 0.1
Abstract:
A stacked structure including: a single crystal substrate and, single crystal material on the single crystal substrate, wherein the single crystal material has a same crystallographic orientation as a crystallographic orientation of the single crystal substrate. Also a method of forming the stacked structure, a ceramic electronic component, and a device.