Abstract:
A multi-layer circuit board capable of being applied with electrical testing includes a patterned metal-interface layer, a metallic delivery loading plate, an electrical connection layer, a conductive corrosion-barrier layer, a bottom dielectric layer, and a multi-layer circuit structure. The multi-layer circuit structure is disposed on the delivery loading plate through the bottom dielectric layer. The top-layer circuit of the multi-layer circuit structure is electrically connected to the conductive corrosion-barrier layer through the bottom-layer circuit and the electrical connection layer. The delivery loading plate and the patterned metal-interface layer expose the conductive corrosion-barrier layer. Therefore, before the multi-layer circuit board is packaged, an electrical testing can be applied to the multi-layer circuit board to check if it can be operated normally. Hence, costs for figuring out reasons of the unqualified electronic component can be reduced, and responsibilities for the unqualified electrical testing result of the electronic component can be clarified.
Abstract:
A process of constructing a filled via of a printed circuit board comprises drilling a via hole through a body of the printed circuit board, desmearing a barrel of the via hole, metallizing a outer surface of the via barrel, electroplating the via barrel, pushing nano-copper solder into the via hole and heating the circuit board in order to melt the nano-copper solder within the via hole. The nano-copper solder improves the thermal conductivity of the printed circuit board for applications when heat needs to be conducted from one side of the printed circuit board to another.
Abstract:
Active or functional additives are embedded into surfaces of host materials for use as components in a variety of electronic or optoelectronic devices, including solar devices, smart windows, displays, and so forth. Resulting surface-embedded device components provide improved performance, as well as cost benefits arising from their compositions and manufacturing processes.
Abstract:
Active or functional additives are embedded into surfaces of host materials for use as components in a variety of electronic or optoelectronic devices, including solar devices, smart windows, displays, and so forth. Resulting surface-embedded device components provide improved performance, as well as cost benefits arising from their compositions and manufacturing processes.
Abstract:
Active or functional additives are embedded into surfaces of host materials for use as components in a variety of electronic or optoelectronic devices, including solar devices, smart windows, displays, and so forth. Resulting surface-embedded device components provide improved performance, as well as cost benefits arising from their compositions and manufacturing processes.
Abstract:
The present invention relates to an adhesive substrate for forming a conductive pattern, which includes an adhesive substrate, and a precursor pattern of a conductive pattern, or a conductive pattern, provided on one side of the adhesive substrate, a method for preparing a conductive pattern using the adhesive substrate, a conductive pattern prepared using the adhesive substrate, and an electronic device including the conductive pattern.
Abstract:
Discloses herein is a patterned transparent conductive electrode, comprises a substrate and a substantial single conductive layer on top of the substrate. The single conductive layer comprises a first region comprising a network of silver nanowires and means for protecting the nanowire from surface oxidation; and a second region, comprising a plurality of metal nanowires and means for protecting nanowire from surface oxidation, and metal oxide nanowires.
Abstract:
A strip for an electronic device senses a liquid sample. The strip includes a substrate having a first surface, a plurality of protrusions disposed on the first surface, and each having a width, and a hydrophilic layer having a layer surface disposed on the first surface and the plurality of protrusions, and having a second surface opposite to the layer surface, whereby the liquid sample and the second surface have a contact angle therebetween ranging from 2 to 85 degrees when the liquid sample is disposed on the hydrophilic layer.
Abstract:
Provided is an optically transparent conductive material which is suitable as an optically transparent electrode for capacitive touchscreens, the optically transparent conductive material not causing moire even when placed over a liquid crystal display, having a favorably low pattern conspicuousness (non-conspicuousness), and having a high reliability. The optically transparent conductive material has, on an optically transparent support, an optically transparent conductive layer having optically transparent sensor parts electrically connected to terminal parts and optically transparent dummy parts not electrically connected to terminal parts, and in this optically transparent conductive material, the sensor parts and the dummy parts are formed of a metal thin line pattern having a mesh shape, and in the plane of the optically transparent conductive layer, the contour shape of each of the sensor parts extends in a first direction, the dummy parts are arranged alternately with the sensor parts in a second direction perpendicular to the first direction, the sensor parts are arranged at a cycle of L in the second direction, at least part of the metal thin line pattern in the sensor parts has a cycle of 2L/N in the second direction (wherein N is any natural number), and the metal thin line pattern in the dummy parts has a cycle longer than 2L/N or does not have a cycle in the second direction.
Abstract:
The present invention provides a light-transmitting conductor comprising: a substrate; and a conduction layer on the substrate, wherein the conduction layer comprises a conductive material, and the conduction layer has a pattern corresponding to a network formed such that nanostructures are arranged to intersect with each other that includes a substrate and a conduction layer on the substrate.