Abstract:
Disclosed is a light emitting diode including a plurality of light emitting diode elements and a method of fabricating the same. The light emitting diode includes: a substrate; a plurality of light emitting diode elements disposed on the substrate; interconnection lines connecting the light emitting diode elements to each other, wherein the plurality of light emitting diode elements comprise outer light emitting diode elements aligned along an edge of the substrate, each of the outer light emitting diode elements comprises an inner face directed towards an adjacent light emitting diode element and an outer face disposed adjacent the edge of the substrate and directed towards an outside of the substrate, and the inner face of at least one of the outer light emitting diode elements comprises a more gently slanted side surface than the outer face thereof.
Abstract:
A light-emitting element includes a light-emitting structure including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer interposed between the first conductive semiconductor layer and the second conductive semiconductor layer; a first contact electrode and a second contact electrode located on the light-emitting structure, and respectively making ohmic contact with the first conductive semiconductor layer and the second conductive semiconductor layer; an insulation layer for covering a part of the first contact electrode and the second contact electrode so as to insulate the first contact electrode and the second contact electrode; a first electrode pad and a second electrode pad electrically connected to each of the first contact electrode and the second contact electrode; and a radiation pad formed on the insulation layer, and radiating heat generated from the light-emitting structure.
Abstract:
A light emitting diode includes a substrate including a concave-convex pattern having concave portions and convex portions, a first light emitting unit disposed on the substrate, a second light emitting unit disposed on the substrate, a first wire connecting the first light emitting unit to the second light emitting unit over the concave-convex pattern, and an insulation layer disposed between the concave-convex pattern and the wire. The insulation layer has a shape corresponding to the concave-convex pattern.
Abstract:
A light emitting diode including a first light emitting cell and a second light emitting cell disposed on a substrate and spaced apart from each other to expose a surface of the substrate, a first transparent layer disposed on and electrically connected to the first light emitting cell, first connection section disposed on a portion of the first light emitting cell, a second connection section disposed on a portion of the second light emitting cell, a first interconnection and a second interconnection electrically connecting the first light emitting cell and the second light emitting cell, and an insulation layer disposed between the first and second interconnections and a side surface of the first light emitting cell.
Abstract:
A light-emitting diode includes a support substrate, a semiconductor stack disposed on the support substrate, the semiconductor stack including a p-type compound semiconductor layer, an active layer and a n-type semiconductor layer, a reflective metal layer disposed between the support substrate and the semiconductor stack, the reflective metal layer being in ohmic contact with the p-type compound semiconductor layer of the semiconductor stack and having a groove exposing a portion of the semiconductor stack, a first electrode pad contacting the n-type compound semiconductor layer of the semiconductor stack, an electrode extension connected to the first electrode pad, the electrode extension disposed directly over the groove along a line perpendicular to the support substrate, an upper insulation layer disposed between the first electrode pad and the semiconductor stack. The electrode extension includes an Ni layer contacting the n-type compound semiconductor layer, and two Au layers disposed on the Ni layer.
Abstract:
A light-emitting diode includes a support substrate, a semiconductor stack disposed on the support substrate, the semiconductor stack including a p-type compound semiconductor layer, an active layer and a n-type semiconductor layer, a reflective metal layer disposed between the support substrate and the semiconductor stack, the reflective metal layer being in ohmic contact with the p-type compound semiconductor layer of the semiconductor stack and having a groove exposing a portion of the semiconductor stack, a first electrode pad contacting the n-type compound semiconductor layer of the semiconductor stack, an electrode extension connected to the first electrode pad, the electrode extension disposed directly over the groove along a line perpendicular to the support substrate, an upper insulation layer disposed between the first electrode pad and the semiconductor stack. The electrode extension includes an Ni layer contacting the n-type compound semiconductor layer, and two Au layers disposed on the Ni layer.
Abstract:
A light-emitting device according to an exemplary embodiment of the present invention includes a first conductivity-type semiconductor layer disposed on a substrate; an active layer disposed on the first conductivity-type semiconductor layer; a second conductivity-type semiconductor layer disposed on the active layer; and an irregular convex-concave pattern disposed on a surface of the first conductivity-type semiconductor layer. The irregular convex-concave pattern includes convex portions and concave portions, and the convex portions have irregular heights and the concave portions have irregular depths. The first conductivity-type semiconductor layer including the irregular convex-concave pattern is exposed from the active layer and the second conductivity-type semiconductor layer.
Abstract:
Exemplary embodiments of the present invention provide a light emitting diode including light emitting units disposed on a substrate, and wires connecting the light emitting units to each other, wherein the light emitting units each include a parallelogram-shaped light emitting unit having two acute angles and two obtuse angles, or a triangular light emitting unit having three acute angles.
Abstract:
Disclosed herein in an LED chip including electrode pads. The LED chip includes a semiconductor stack including a first conductive type semiconductor layer, a second conductive type semiconductor layer on the first conductive type semiconductor layer, and an active layer interposed between the first conductive type semiconductor layer and the second conductive type semiconductor layer, a first electrode pad located on the second conductive type semiconductor layer opposite to the second conductive type semiconductor layer, a first electrode extension extending from the first electrode pad and connected to the first conductive type semiconductor layer, a second electrode pad electrically connected to the second conductive type semiconductor layer, and an insulation layer interposed between the first electrode pad and the second conductive type semiconductor layer. The LED chip includes the first electrode pad on the second conductive type semiconductor layer, thereby increasing a light emitting area.