Error correction hardware with fault detection

    公开(公告)号:US11372715B2

    公开(公告)日:2022-06-28

    申请号:US16790444

    申请日:2020-02-13

    Abstract: Error correction code (ECC) hardware includes write generation (Gen) ECC logic and a check ECC block coupled to an ECC output of a memory circuit with read Gen ECC logic coupled to an XOR circuit that outputs a syndrome signal to a syndrome decode block coupled to a single bit error correction block. A first MUX receives the write data is in series with an input to the write Gen ECC logic or a second MUX receives the read data from the memory circuit in series with an input of the read Gen ECC logic. A cross-coupling connector couples the read data from the memory circuit to a second input of the first MUX or for coupling the write data to a second input of the second MUX. An ECC bit comparator compares an output of the write Gen ECC logic to the read Gen ECC logic output.

    SAVE-RESTORE IN INTEGRATED CIRCUITS
    13.
    发明申请

    公开(公告)号:US20200210072A1

    公开(公告)日:2020-07-02

    申请号:US16235897

    申请日:2018-12-28

    Abstract: In described examples, circuitry for saving and restoring a design block state includes first memories configured to receive, and store in different first memories in a first order, different portions of first data; and a second memory coupled to first memories. First memories with the most memory cells have N memory cells. First memories with fewer memory cells have M memory cells. When saving state, first data from different first memories is written in a second order to different corresponding regions of the second memory as second data. The second order repeats portions of the first data stored in sequentially first N mod M cells, determined using the first order, of corresponding first memories with fewer cells. When restoring state, second data is read from the second memory and stored, in the first order, in corresponding first memories; repeated portions are repeatedly stored in corresponding first memories with fewer cells.

    FMCW chirp bandwidth control
    16.
    发明授权

    公开(公告)号:US11789137B2

    公开(公告)日:2023-10-17

    申请号:US17138549

    申请日:2020-12-30

    Abstract: In described examples, a frequency modulated continuous wave (FMCW) synthesizer includes a control engine, and a phase locked loop (PLL) including a frequency divider, a control voltage generator (CVG), and a voltage controlled oscillator (VCO). The frequency divider modifies a VCO output frequency based on a control input. The CVG generates a control voltage based on a frequency reference and the frequency divider output. The VCO outputs a FMCW output having the VCO output frequency in response to the control voltage. The control engine generates the control input so that the VCO output frequency: from a first time to a second time, is a first frequency; from the second time to a third time, changes at a first rate; from the third time to a fourth time, changes at a second rate different from the first rate; and from the fourth time to a fifth time, is a second frequency.

    Radar hardware accelerator
    17.
    发明授权

    公开(公告)号:US11579242B2

    公开(公告)日:2023-02-14

    申请号:US16442152

    申请日:2019-06-14

    Abstract: A radar hardware accelerator (HWA) includes a fast Fourier transform (FFT) engine including a pre-processing block for providing interference mitigation and/or multiplying a radar data sample stream received from ADC buffers within a split accelerator local memory that also includes output buffers by a pre-programmed complex scalar or a specified sample from an internal look-up table (LUT) to generate pre-processed samples. A windowing plus FFT block (windowed FFT block) is for multiply the pre-processed samples by a window vector and then processing by an FFT block for performing a FFT to generate Fourier transformed samples. A post-processing block is for computing a magnitude of the Fourier transformed samples and performing a data compression operation for generating post-processed radar data. The pre-processing block, windowed FFT block and post-processing block are connected in one streaming series data path.

    Save-restore in integrated circuits

    公开(公告)号:US11537309B2

    公开(公告)日:2022-12-27

    申请号:US16995542

    申请日:2020-08-17

    Abstract: In described examples, circuitry for saving and restoring a design block state includes first memories configured to receive, and store in different first memories in a first order, different portions of first data; and a second memory coupled to first memories. First memories with the most memory cells have N memory cells. First memories with fewer memory cells have M memory cells. When saving state, first data from different first memories is written in a second order to different corresponding regions of the second memory as second data. The second order repeats portions of the first data stored in sequentially first N mod M cells, determined using the first order, of corresponding first memories with fewer cells. When restoring state, second data is read from the second memory and stored, in the first order, in corresponding first memories; repeated portions are repeatedly stored in corresponding first memories with fewer cells.

    Error Correction Hardware With Fault Detection

    公开(公告)号:US20220283899A1

    公开(公告)日:2022-09-08

    申请号:US17824605

    申请日:2022-05-25

    Abstract: Error correction code (ECC) hardware includes write generation (Gen) ECC logic and a check ECC block coupled to an ECC output of a memory circuit with read Gen ECC logic coupled to an XOR circuit that outputs a syndrome signal to a syndrome decode block coupled to a single bit error correction block. A first MUX receives the write data is in series with an input to the write Gen ECC logic or a second MUX receives the read data from the memory circuit in series with an input of the read Gen ECC logic. A cross-coupling connector couples the read data from the memory circuit to a second input of the first MUX or for coupling the write data to a second input of the second MUX. An ECC bit comparator compares an output of the write Gen ECC logic to the read Gen ECC logic output.

    FFT engine having combined bit-reversal and memory transpose operations

    公开(公告)号:US11170071B2

    公开(公告)日:2021-11-09

    申请号:US16221470

    申请日:2018-12-15

    Abstract: A data processing device includes: 1) Fast Fourier Transform (FFT) logic configured to generate FFT output samples for each of a plurality of digital input signals; 3) a first memory device with a plurality of banks; 4) a second memory device; 5) a bit-reversed address generator and first set of circular shift components configured to shift between the plurality of banks when writing the generated FFT output samples in bit-reversed address order to the first memory device; and 6) a second set of circular shift components configured to shift between the plurality of banks when reading FFT output samples in linear address order from the first memory device for storage in the second memory device, wherein the first and second set of circular shift components together are configured to read FFT output samples in transpose order using combined bit-reversal and memory transpose operations.

Patent Agency Ranking