Abstract:
A semiconductor device has a vertical drain extended MOS transistor with deep trench structures to define a vertical drift region and at least one vertical drain contact region, separated from the vertical drift region by at least one instance of the deep trench structures. Dopants are implanted into the vertical drain contact regions and the semiconductor device is annealed so that the implanted dopants diffuse proximate to a bottom of the deep trench structures. The vertical drain contact regions make electrical contact to the proximate vertical drift region at the bottom of the intervening deep trench structure. At least one gate, body region and source region are formed above the drift region at, or proximate to, a top surface of a substrate of the semiconductor device. The deep trench structures are spaced so as to form RESURF regions for the drift region.
Abstract:
A semiconductor device includes a GaN FET with an overvoltage clamping component electrically coupled to a drain node of the GaN FET and coupled in series to a voltage dropping component. The voltage dropping component is electrically coupled to a terminal which provides an off-state bias for the GaN FET. The overvoltage clamping component conducts insignificant current when a voltage at the drain node of the GaN FET is less than the breakdown voltage of the GaN FET and conducts significant current when the voltage rises above a safe voltage limit. The voltage dropping component is configured to provide a voltage drop which increases as current from the overvoltage clamping component increases. The semiconductor device is configured to turn on the GaN FET when the voltage drop across the voltage dropping component reaches a threshold value.
Abstract:
An integrated circuit containing an extended drain MOS transistor which has a drift layer, an upper RESURF layer over and contacting an upper surface of the drift layer, and a buried drain extension below the drift layer which is electrically connected to the drift layer at the drain end and separated from the drift layer at the channel end. A lower RESURF layer may be formed between the drift layer and the buried drain extension at the channel end. Any of the upper RESURF layer, the drift layer, the lower RESURF layer and the buried drain extension may have a graded doping density from the drain end to the channel end. A process of forming an integrated circuit containing an extended drain MOS transistor which has the drift layer, the upper RESURF layer, and the buried drain extension.
Abstract:
An integrated circuit containing an extended drain MOS transistor may be formed by forming a drift region implant mask with mask fingers abutting a channel region and extending to the source/channel active area, but not extending to a drain contact active area. Dopants implanted through the exposed fingers form lateral doping striations in the substrate under the mask fingers. An average doping density of the drift region under the gate is at least 25 percent less than an average doping density of the drift region at the drain contact active area. In one embodiment, the dopants diffuse laterally to form a continuous drift region. In another embodiment, substrate material between lateral doping striations remains an opposite conductivity type from the lateral doping striations.
Abstract:
A High Electron Mobility Transistor (HEMT) includes an active layer on a substrate, and a Group IIIA-N barrier layer on the active layer. An isolation region is through the barrier layer to provide at least one isolated active area including the barrier layer on the active layer. A gate is over the barrier layer. A drain includes at least one drain finger including a fingertip having a drain contact extending into the barrier layer to contact to the active layer and a source having a source contact extending into the barrier layer to contact to the active layer. The source forms a loop that encircles the drain. The isolation region includes a portion positioned between the source and drain contact so that there is a conduction barrier in a length direction between the drain contact of the fingertip and the source.
Abstract:
In at least some embodiments, a system comprises a socket gate terminal configured to receive a first voltage to activate and inactivate a device under test (DUT) coupled to the socket gate terminal. The system also comprises a socket source terminal configured to provide a reference voltage to the DUT. The system further comprises a socket drain terminal configured to provide a second voltage to the DUT to stress the DUT when the DUT is inactive. The socket drain terminal is further configured to receive a third voltage to cause a current to flow through a pathway in the DUT between the socket drain terminal and the socket source terminal when the DUT is active. The socket drain terminal is further configured to provide a fourth voltage indicative of a resistance of the pathway in the DUT when the DUT is active and is heated to a temperature above an ambient temperature associated with the system.
Abstract:
A semiconductor device includes a GaN FET with an overvoltage clamping component electrically coupled to a drain node of the GaN FET and coupled in series to a voltage dropping component. The voltage dropping component is electrically coupled to a terminal which provides an off-state bias for the GaN FET. The overvoltage clamping component conducts insignificant current when a voltage at the drain node of the GaN FET is less than the breakdown voltage of the GaN FET and conducts significant current when the voltage rises above a safe voltage limit. The voltage dropping component is configured to provide a voltage drop which increases as current from the overvoltage clamping component increases. The semiconductor device is configured to turn on the GaN FET when the voltage drop across the voltage dropping component reaches a threshold value.
Abstract:
An integrated circuit and method having a JFET with a buried drift layer and a buried channel in which the buried channel is formed by implanting through segmented implant areas so that the doping density of the buried channel is between 25 percent and 50 percent of the doping density of the buried drift layer.
Abstract:
A semiconductor device includes a depletion mode GaN FET and an integrated driver/cascode IC. The integrated driver/cascode IC includes an enhancement mode cascoded NMOS transistor which is connected in series to a source node of the GaN FET. The integrated driver/cascode IC further includes a driver circuit which conditions a gate input signal and provides a suitable digital waveform to a gate node of the cascoded NMOS transistor. The cascoded NMOS transistor and the driver circuit are formed on a same silicon substrate.
Abstract:
A semiconductor device is formed with a stepped field plate over at least three sequential regions in which a total dielectric thickness under the stepped field plate is at least 10 percent thicker in each region compared to the preceding region. The total dielectric thickness in each region is uniform. The stepped field plate is formed over at least two dielectric layers, of which at least all but one dielectric layer is patterned so that at least a portion of a patterned dielectric layer is removed in one or more regions of the stepped field plate.