Abstract:
There is provided a film forming apparatus for performing a film forming process on substrates by heating the substrates while the substrates are held in a shelf shape by a substrate holder in a vertical reaction container. The film forming apparatus includes: an exhaust part configured to evacuate the reaction container; a gas supply part configured to supply a film forming gas into the reaction container; a heat insulating member provided above or below an arrangement region of the substrates to overlap with the arrangement region and configured to thermally insulate the arrangement region from an upper region above the arrangement region or a lower region below the arrangement region; and a through-hole provided in the heat insulating member at a position overlapping with central portions of the substrates to adjust a temperature distribution in a plane of each substrate held near the heat insulating member.
Abstract:
There is provided a method of forming a silicon film on a target surface of a target object, including: performing a gas process on the target surface of the target object using an oxygen gas and a hydrogen gas; forming the silicon film on the target surface to which the gas process has been performed, wherein the performing a gas process and the forming the silicon film are performed within a single processing chamber.
Abstract:
There is provided a method of forming a germanium (Ge) film on a surface of a target object, which includes: supplying an aminosilane-based gas into a processing chamber in which the target object is loaded; supplying a high-order silane-based gas of disilane or higher into the processing chamber; and supplying a Ge source gas into the processing chamber. A process temperature in supplying the Ge source gas is set to fall within a range from a temperature, at which the Ge source gas is thermally decomposed or higher, to 300 degrees C. or less.
Abstract:
A method of vapor-diffusing impurities into a diffusion region of a target substrate to be processed using a dummy substrate is provided. The method includes loading the target substrate and the dummy substrate in a substrate loading jig, accommodating the substrate loading jig loaded with the target substrate and the dummy substrate in a processing chamber of a processing apparatus, and vapor-diffusing impurities into the diffusion region of the target substrate in the processing chamber having the accommodated substrate loading jig. The vapor-diffused impurities are boron, an outer surface of the dummy substrate includes a material having properties not allowing boron adsorption.
Abstract:
According to one embodiment of the present disclosure, there is provided a substrate processing method including: providing a substrate; forming a seed layer on a surface of the substrate by heating a stage on which the substrate is placed to a first temperature and supplying a first source gas to the substrate; and forming a metal-containing film by heating the stage on which the substrate is placed to a second temperature and supplying a second source gas and a first reducing gas to the substrate on which the seed layer is formed.
Abstract:
There is provided a substrate processing system including an etching apparatus configured to supply a gas containing fluorocarbon to generate plasma so as to perform an etching process on a film including silicon formed on a substrate, wherein the etching process is performed by using plasma through a mask formed on the film including silicon, a film forming apparatus configured to supply a gas containing carbon so as to form a film including carbon on the etched film including silicon. The film forming apparatus is provided separately from the etching apparatus, the etching apparatus performing, a first etching step in which the film including silicon is partway etched by using plasma; and a second etching step in which the film including silicon, on which the film including carbon is formed, is further etched by using plasma, the film forming apparatus performing a film forming step in which the film including carbon is formed, without generating plasma, on the film including silicon on which the first etching step has been performed.
Abstract:
A method for crystallizing a group IV semiconductor to form group IV semiconductor crystals on a process surface of a workpiece on which a process is performed, includes forming an additive-containing group IV semiconductor film on the process surface of the workpiece by supplying a group IV semiconductor precursor gas serving as a precursor of the group IV semiconductor and an additive gas which lowers a melting point of the group IV semiconductor and which includes an additive whose segregation coefficient is smaller than “1”, liquefying the additive-containing group IV semiconductor film, and solidifying the liquefied additive-containing group IV semiconductor film from the side of the process surface of the workpiece to form the group IV semiconductor crystals.
Abstract:
A processing apparatus includes a chamber having a gas inlet and a gas outlet; a plasma generator; and a controller configured to cause: (a) etching a silicon-containing film to a first depth with a first plasma in the chamber, thereby forming a recess in the silicon-containing film; (b) forming a protection film on a side wall of the recess with a second plasma in the chamber, the protection film having a first thickness at an upper portion of the recess and a second thickness at a lower portion of the recess, the second thickness being smaller than the first thickness; and (c) etching the silicon-containing film to a second depth with the third plasma in the chamber, the second depth being greater than the first depth.
Abstract:
There is provided a method of forming a silicon film, which includes: a film forming step of forming the silicon film on a base, the silicon film having a film thickness thicker than a desired film thickness; and an etching step of reducing the film thickness of the silicon film by supplying an etching gas containing bromine or iodine to the silicon film.
Abstract:
A method for forming a boron-doped silicon germanium film on a base film in a surface of an object to be processed includes: forming a seed layer by adsorbing a chlorine-free boron-containing gas to a surface of the base film; and forming a boron-doped silicon germanium film on the surface of the base film to which the seed layer is adsorbed by using a silicon raw material gas, a germanium raw material gas, and a boron doping gas through a chemical vapor deposition method.