摘要:
A method is provided for preparing, with high reproducibility, a carbon-doped group III-V compound semiconductor crystal having favorable electrical characteristics and having impurities removed therefrom, and in which the amount of doped carbon can be adjusted easily during crystal growth. This method includes the steps of: filling a crucible with compound raw material, solid carbon, and boron oxide; sealing the filled crucible gas impermeable material; heating and melting the compound raw material under the sealed state in the airtight vessel; and solidifying the melted compound raw material to grow a carbon-doped compound semiconductor crystal.
摘要:
A large semiconductor crystal has a diameter of at least 6 inches and a low dislocation density of not more than 1×104 cm−2. The crystal is preferably a single crystal of GaAs, or one of CdTe, InAs, GaSb, Si or Ge, and may have a positive boron concentration of not more than 1×1016 cm−3 and a carbon concentration of 0.5×1015 cm−3 to 1.5×1015 cm−3 with a uniform concentration throughout the crystal. Such a crystal can form a very thin wafer with a low dislocation density. A special method and apparatus for producing such a crystal is also disclosed.
摘要翻译:大半导体晶体具有至少6英寸的直径和不大于1×10 -4 cm -2的低位错密度。 该晶体优选为GaAs的单晶,或CdTe,InAs,GaSb,Si或Ge中的一种,并且可以具有不大于1×10 16 cm -3的正硼浓度和0.5×10 6的碳浓度 <15> cm -3至1.5×10 15 cm -3,在整个晶体中具有均匀的浓度。 这种晶体可以形成具有低位错密度的非常薄的晶片。 还公开了一种用于制造这种晶体的特殊方法和装置。
摘要:
A modified liquid encapsulated Czockralski method for growing a single crystal of compound semiconductor is disclosed. This method uses two vessels. An inner vessel is filled with an inactive gas, a gas of an element of group V and optionally an impurity gas. The inner vessel encloses a crucible containing compound semiconductor material, an encapsulant material, and optionally an impurity element. An outer vessel is filled only with the inactive gas. The total pressure of the inner atmosphere is equal to or higher than that of the outer atmosphere. The partial pressure of the gas of the element of group V is larger than the dissociation pressure of the element of group V near the melting point of the compound semiconductor.
摘要:
A process for growing single crystals of the III-V compound semiconductor is provided, which is the vapor pressure control method using a vertical puller and which is characterized by dividing the surface area of the melt into two sections, covering one section with a liquid encapsulant while remaining the other section in contact with the atmosphere of the vessel (furnace), and this process may be preferably carried out by using an apparatus which comprises a sealable vessel, an upper shaft, a lower shaft, a plurality of heaters, a crucible and a means for dividing the surface of melt contained in the crucible, and as a result single crystal of III-V compound semiconductor having various excellent properties such as low impurity content (high purity), low dislocation density, and the like may be obtained.
摘要:
The present invention provides a filter with which organic matter, bacteria, viruses, and other harmful substances can be trapped, and the trapped material can be sterilized and decomposed, at low cost and extremely high efficiency. A porous ceramic or metal is used as a substrate, and a porous semiconductor composed of a semiconductor material having a light emitting function is formed in the interior or on the surface of this substrate. An electrode is provided to this product to serve as a filter, voltage is applied so that ultraviolet light is emitted while a fluid is being filtered, and any harmful substances are filtered and simultaneously sterilized and decomposed. The porous semiconductor layer is preferably composed of columns grown perpendicular to the substrate plane, and has the function of emitting ultraviolet light with a wavelength of 400 nm or less. The pores in the porous substrate column are through-holes perpendicular to the substrate plane, and the average size of these pores is preferably from 0.1 to 100 μm. The distal ends of the columns preferably have a pointed shape. To manufacture, a suspension of semiconductor particles having a light emitting function is filtered through the porous substrate serving as a filter medium so as to form a deposited layer of semiconductor particles on the porous substrate surface. A deposited layer of p-type semiconductor particles and a deposited layer of n-type semiconductor particles may also be formed so that these form a pn junction. Further, the present invention is characterized in that an insulating layer is formed on the top and bottom surfaces of the porous semiconductor layer, and semiconductor particles are dispersed in the insulating layer, with the bandgap of the semiconductor particles in the porous light emitting layer or the porous semiconductor layer being at least 3.2 eV, and being doped with gadolinium, which is the light emitting center. In addition, the porous semiconductor layer may be made of porous silicon nitride composed of columnar Si3N4 particles with an average aspect ratio of at least 3 and an oxide-based binder phase containing at least one of rare earth element, and emit visible light or ultraviolet light.
摘要:
Single crystal during growth is irradiated by an slitted X-ray beam and the diffracted X-ray beam from the crystal is monitored by an image amplifier with a two dimensional manner so that the diffracted X-ray can be monitored by the image amplifier even if there occurs change of the diameter of the crystal. A half portion of the single crystal during growth is irradiated by a slitted X-ray beam and the other half portion of the crystal is irradiated by the X-ray beam over the entire height of the crystal so that the Laue spots of the crystal growth is displayed on one half portion of the display of the image amplifier and a shape of the crystal being pulled up is monitored in another half portion of the display of the image amplifier.
摘要:
A hologram recording material comprises one of bismuth silicon oxide and bismuth germanium oxide, and Fe added to these material. The density of Fe is 10 p.p.m.
摘要:
A vapor phase growth apparatus 1 for growing a group III-V nitride semiconductor (GaN) comprises a reaction ampoule 3 having a container 11 disposed therein for containing a group III element and an inlet 7 for introducing nitrogen; excitation means 15 for plasma-exciting nitrogen introduced from the inlet 7; and heating means 13 for heating a seed crystal 10 disposed within the reaction ampoule 3 and the container 11; wherein, upon growing the group III-V nitride semiconductor on the seed crystal 10, nitrogen is introduced from the inlet 7, and no gas is let out from within the reaction ampoule 3.
摘要:
A Czochralski method using radiation intercepting members (1, 9) is used for manufacturing a single crystal such as compound semiconductors with a high production yield using a material having a low thermal conductivity or with a small temperature gradient in the pulling direction. In this method, a coracle (6) having an opening is provided in a melt contained in a crucible (3). A first member (1) is positioned on the coracle (6) to intercept heat radiation from the melt. A second member (9) supported by a crystal pulling shaft (8) is positioned on the first member (1) to cover an opening formed at the center of the first member (1). Seeding is performed while heat loss is limited by intercepting the radiation with the first and the second members. After the seeding, a shoulder portion of a single crystal is formed while heat loss is still limited while intercepting the radiation with the members (1, 9). A cylindrical body of the single crystal is pulled by the shaft (8) which also lifts the members(1, 9).
摘要:
A magnetic field and electric current measuring device which uses bismuth silicon oxide (Bi.sub.12 SiO.sub.20) or bismuth germanium oxide (Bi.sub.12 GeO.sub.20) as a Faraday cell, and which is so adapted that polarized light which enters the cell is passed back and forth through the cell along the optic axis thereof to cancel any change in optical rotatory power ascribable to a variation in temperature. A magnetic field applied in the direction of the optic axis of the Faraday cell is measured based on the angle of rotation of the polarization plane of the polarized light. The surface of the Faraday cell may be coated with a transparent and electrically conductive thin film to eliminate the effects of external electric fields.