Abstract:
A nonvolatile memory system is operated by performing a program loop on each of a plurality of memory cells, each program loop comprising at least one program-verify operation and selectively pre-charging bit lines associated with each of the plurality of memory cells during the at least one program-verify operation.
Abstract:
Provided are a waveguide structure and an arrayed waveguide grating structure. The arrayed waveguide grating structure includes an input star coupler, an output star coupler, and a plurality of arrayed waveguides optically connecting the input star coupler and the output star coupler. Each of the arrayed waveguides includes at least one section having a high confinement factor and at least two sections having a relatively low confinement factor. The sections of the arrayed waveguides having a high confinement factor have the same structure.
Abstract:
Provided is a photonics device including at least two arrayed waveguide grating structures. Each of the arrayed waveguide grating structures of the photonics device includes an input star coupler, an output star coupler, and a plurality of arrayed waveguides optically connecting the input star coupler to the output star coupler. Each of the arrayed waveguides includes at least one first section having a high confinement factor and at least two second sections having a low confinement factor. The first sections of the arrayed waveguides have the same structure.
Abstract:
A program verification method is for a nonvolatile memory device which programs a plurality of memory cells. The program verification method includes applying a plurality of verification voltages, and determining whether programming of memory cells, having different target threshold voltage distributions, from among the plurality of memory cells is completed based on one of the plurality of verification voltages.
Abstract:
The inventive concept provides optic couplers, optical fiber laser devices, and active optical modules using the same. The optic coupler may include a first optical fiber having a first core and a first cladding surrounding the first core, a second optical fiber having a second core transmitting a signal light to the first optical fiber and a third cladding surrounding the second core, third optical fibers transmitting pump-light to the first optical fiber in a direction parallel to the second optical fiber; and a connector connected between the first optical fiber and the second optical fiber, the connector extending the third optical fibers disposed around the second optical fiber toward the first optical fiber, the connector comprising a third core connected between the first core and the second core and a fifth cladding surrounding the third core.
Abstract:
A flash memory device controls a common source line voltage and performs a program verify method. A plurality of memory cells is connected between a bit line and the common source line. A data input/output circuit is connected to the bit line and is configured to store data to be programmed in a selected memory cell of the plurality of memory cells. The data input/output circuit maintains data to be programmed within the data input/output circuit during a program verify operation, and decreases noise in the common source line by selectively precharging the bit line based on the data to be programmed.
Abstract:
A non-volatile memory device includes a feedback circuit and a precharge switching transistor. The feedback circuit generates a feedback signal based on a voltage level of a bitline during a precharge operation. The precharge switching transistor, in response to the feedback signal, controls a precharge current for precharging the bitline. The speed of the precharge operation may be increased and/or mismatch of the bias signals in precharging a plurality of bitlines may be reduced.
Abstract:
To program in a nonvolatile memory device include a plurality of memory cells that are programmed into multiple states through at least two program steps, a primary program is performed from an erase level to a first target level with respect to the memory cells coupled to a selected word line A preprogram is performed from the erase level to a preprogram level in association with the primary program with respect to the memory cells coupled to the selected word line, where the preprogram level is larger than the erase level and smaller than the first target level A secondary program is performed from the preprogram level to a second target level with respect to the preprogrammed memory cells coupled to the selected word line.
Abstract:
The inventive concept provides optic couplers, optical fiber laser devices, and active optical modules using the same. The optic coupler may include a first optical fiber having a first core and a first cladding surrounding the first core, a second optical fiber having a second core transmitting a signal light to the first optical fiber and a third cladding surrounding the second core, third optical fibers transmitting pump-light to the first optical fiber in a direction parallel to the second optical fiber; and a connector connected between the first optical fiber and the second optical fiber, the connector extending the third optical fibers disposed around the second optical fiber toward the first optical fiber, the connector comprising a third core connected between the first core and the second core and a fifth cladding surrounding the third core.
Abstract:
A solar cell is provided with a hetero-junction front structure (e.g., P/N or P/I/N) and is further provided in a back portion of thereof with a passivation layer having a plurality of openings defined therethrough. A BSF-forming binder material and a back face electrode are provided contacting the back surface and are fired to thereby bind the back face electrode to the structure and to form a BSF region extending from the openings of the passivation layer.
Abstract translation:太阳能电池设置有异质结前结构(例如,P / N或P / I / N),并且在其后部还设置有具有通过其限定的多个开口的钝化层。 提供形成BSF的粘合剂材料和背面电极,其与后表面接触并被烧制,从而将背面电极结合到结构上并形成从钝化层的开口延伸的BSF区域。