Abstract:
The present disclosure provides a process for regenerating the deactivated ionic compound. The process involves mixing a deactivated ionic compound with at least one solvent such as ethyl acetate and neutralizing with at least one base such as triethylamine and tert-butyl amine to obtain a precipitate. The obtained precipitate is filtered to obtain a residue which is then washed with a solvent such as dichloromethane to obtain the ionic compound.
Abstract:
The present invention relates to salts comprising pyrrolidinium, triazolinium, piperidinium or morpholinium cations that can have substituents thereon and alkyltrifluorophosphate anions, to processes for preparation thereof and to the use thereof, in particular for the preparation of ionic liquids.
Abstract:
The invention relates to a process for preparing alkanolamines, useful in the removal of CO2 and/or H2S from a CO2 and/or H2S containing gaseous stream, wherein the preparation of the alkanolamines is conducted using specifically selected ionic liquids under specifically selected reaction conditions.
Abstract:
There is provided an optical wavelength conversion element with a good temporal stability and such a high optical wavelength conversion efficiency that the element is viable even under sunlight or similar, low intensity light. Owing to these properties, the element is suited for use in solar cells, photocatalysts, photocatalytic hydrogen and oxygen generating devices, photon upconversion filters, and like articles. The optical wavelength conversion element is visually homogeneous and transparent and produced by dissolving and/or dispersing in an ionic liquid (C) a combination of organic photosensitizing molecules (A) and organic light-emitting molecules (B) that exhibits triplet-triplet annihilation. The organic photosensitizing molecules (A) have either an only one local maximum absorption wavelength or a plurality of local maximum absorption wavelengths, and either the single local maximum absorption wavelength or a maximum one of the plurality of local maximum absorption wavelengths is from 250 nm to 499 nm.
Abstract:
Disclosed is an effective method for producing an ester compound at a reaction temperature lower than that of conventional methods, and with a high yield, even when inexpensive formic acid ester is used as a starting material. A method for producing an ester compound, the method comprising the step of reacting an organic compound having at least one unsaturated carbon bond in the molecule, and a formic acid ester in the presence of a catalyst system containing: a ruthenium compound; a cobalt compound; and a halide salt.
Abstract:
Use of ionic liquids as solvents in base-catalysed chemical reactions wherein the ionic liquid is composed of at least one species of cation and at least one species of anion, characterised in that a cation of the ionic liquid comprises a positively charge moiety and a basic moiety, and further wherein such ionic liquids may be used as promoters or catalysts for the chemical reactions.
Abstract:
The application discloses novel processes for the oligomerisation of unsaturated hydrocarbons, and more specifically the use of selected ionic liquids in the oligomerisation of unsaturated hydrocarbons, which allows for selection of the oligomers formed.
Abstract:
The invention relates to a process for modifying isocyanates where at least one organic isocyanate with NCO functionality >1 is oligomerized in the presence of at least one catalyst, characterized in that the catalyst comprises, as isocyanatemodification catalysts, at least one cyclic ammonium salt having a cation of the formula (I) (formula I), where the N-containing substituents R1 and R2 are mutually independently identical or different aliphatic, cycloaliphatic, aromatic or araliphatic C, to C20 moieties which are saturated or unsaturated, linear or branched, optionally substituted and/or interrupted by heteroatoms from the group of oxygen, sulphur and nitrogen, and Y is a substituted or unsubstituted, linear or branched C2 to C20 segment optionally interrupted by heteroatoms from the group of oxygen, sulphur and nitrogen or else intempted by aromatic rings, and optionally containing other rings. The invention further relates to the use of such a catalyst.
Abstract:
A method of controlling a hydrocarbon conversion process is described. The method involves introducing a reactant into a reaction zone containing an ionic liquid catalyst. The reaction zone has at least two zones. The mass transfer resistance in the second zone is greater than the mass transfer resistance in the first zone.
Abstract:
The present disclosure provides a process for regenerating the deactivated ionic compound. The process involves mixing a deactivated ionic compound with at least one solvent such as ethyl acetate and neutralizing with at least one base such as triethylamine and tert-butyl amine to obtain a precipitate. The obtained precipitate is filtered to obtain a residue which is then washed with a solvent such as dichloromethane to obtain the ionic compound.