Motion conversion system
    12.
    发明授权
    Motion conversion system 有权
    运动转换系统

    公开(公告)号:US08621938B2

    公开(公告)日:2014-01-07

    申请号:US13466386

    申请日:2012-05-08

    Abstract: A motion conversion system is described. The motion conversion system comprises a first torsional member operative for rotating in a first direction. A second torsional member is offset a distance from the first torsional member, wherein the second torsional member is operative for rotating in a direction opposite from the first direction. And, a lateral member has a lower surface connected to the first and second torsional members. Wherein, translational movement of the lateral member results from rotational movement of the first and second torsional members.

    Abstract translation: 描述运动转换系统。 运动转换系统包括可操作用于沿第一方向旋转的第一扭转构件。 第二扭转构件偏离与第一扭转构件的距离,其中第二扭转构件可操作用于沿与第一方向相反的方向旋转。 并且,横向构件具有连接到第一和第二扭转构件的下表面。 其中,横向构件的平移运动是由第一和第二扭转构件的旋转运动引起的。

    Method and apparatus for electromagnetic actuation
    13.
    发明授权
    Method and apparatus for electromagnetic actuation 有权
    电磁驱动的方法和装置

    公开(公告)号:US08581678B2

    公开(公告)日:2013-11-12

    申请号:US12373778

    申请日:2007-07-18

    Abstract: Embodiments of the subject invention relate to a method and apparatus for electromagnetic actuation. Embodiments of an electromagnet actuator in accordance with the subject invention can include a fixed main body and a deformable membrane or displaceable piston-like member. In the case of piston motion, in specific embodiments, the piston can be supported by a corrugated diaphragm or bellows. In various embodiments, all or portions of the electromagnet actuator can be produced using microfabrication techniques. Specific embodiment of the subject invention can incorporate a plurality of magnets providing magnetic flux to a plurality of coil conductor elements so as to provide a plurality of locations that a force is applied to the moveable body portion of the electromagnetic actuator. Specific embodiments can incorporate an array of magnets interdigitated with an array of coil conductor elements, where the arrays can include 2, 5, 10, 20, or more each. Further specific embodiments allow the relative position of the magnetic flux and coil conductor elements to remain substantially the same during the movement of the moveable body by positioning the magnets and coil conductor elements on the moveable body so that the relative position of the magnets and the coil conductor elements on the moveable body do not change with the movement of the moveable body.

    Abstract translation: 本发明的实施例涉及一种用于电磁致动的方法和装置。 根据本发明的电磁致动器的实施例可以包括固定主体和可变形膜或可移动的活塞状构件。 在活塞运动的情况下,在具体实施例中,活塞可由波纹膜片或波纹管支撑。 在各种实施例中,电磁致动器的全部或部分可以使用微细加工技术制造。 本发明的具体实施例可以包括向多个线圈导体元件提供磁通量的多个磁体,以便提供将力施加到电磁致动器的可移动主体部分的多个位置。 具体实施例可以包括与线圈导体元件阵列相互指向的磁体阵列,其中阵列可以包括2,5,10,20或更多个。 进一步的具体实施例允许通过将磁体和线圈导体元件定位在可移动体上,使得磁通量和线圈导体元件的相对位置在移动体的移动期间保持基本相同,使得磁体和线圈的相对位置 可移动体上的导体元件不随着可移动体的移动而变化。

    CAPACITIVE TRANSDUCER AND METHODS OF MANUFACTURING AND OPERATING THE SAME
    14.
    发明申请
    CAPACITIVE TRANSDUCER AND METHODS OF MANUFACTURING AND OPERATING THE SAME 有权
    电容式传感器及其制造和运行方法

    公开(公告)号:US20130049528A1

    公开(公告)日:2013-02-28

    申请号:US13591845

    申请日:2012-08-22

    Applicant: Che-heung KIM

    Inventor: Che-heung KIM

    Abstract: Provided are a capacitive transducer, and methods of manufacturing and operating the same. The capacitive transducer includes: a monolithic substrate comprising a first doping region, a second doping region that is opposite in conductivity to the first doping region, and a vibrating portion; and an empty space that is disposed between the first doping region and the vibrating portion. The vibrating portion includes a plurality of through-holes, and a material film for sealing the plurality of through-holes is disposed on the vibrating portion.

    Abstract translation: 提供一种电容式换能器及其制造和操作方法。 电容换能器包括:单片基板,包括第一掺杂区域,与第一掺杂区域的导电性相反的第二掺杂区域和振动部分; 以及设置在第一掺杂区域和振动部分之间的空白空间。 振动部分包括多个通孔,并且用于密封多个通孔的材料膜设置在振动部分上。

    MAGNETIC MICROPARTICLE AND METHOD FOR MANUFACTURING SUCH A MICROPARTICLE
    15.
    发明申请
    MAGNETIC MICROPARTICLE AND METHOD FOR MANUFACTURING SUCH A MICROPARTICLE 有权
    磁性微波和制造这种微波的方法

    公开(公告)号:US20110200434A1

    公开(公告)日:2011-08-18

    申请号:US13060662

    申请日:2010-09-17

    Abstract: A microparticle includes an oblong flexible tail able to propel the microparticle in a solution along a trajectory using beats transverse to the trajectory, the tail including at least one magnetic element such that the magnetic element causes beats of the tail under the action of an external alternating magnetic field non-collinear with the trajectory and a head mechanically connected to a proximal end of the tail. The microparticle includes at least one layer of material formed from one piece and including the tail and the head, the dimensions and/or shape of the head being selected such that the beats of the proximal end of the tail are limited with respect to the beats of the distal end of the tail and such that the head does not perform a complete revolution around an axis parallel to the trajectory under the effect of the external alternating magnetic field.

    Abstract translation: 微粒包括长方形柔性尾部,其能够使用横向于轨迹的搏动沿着轨迹将微粒推进到溶液中,尾部包括至少一个磁性元件,使得磁性元件在外部交替作用下引起尾巴的打击 与轨迹非共线的磁场和机械连接到尾端近端的磁头。 微粒包括至少一层材料,其由一个部件形成并包括尾部和头部,头部的尺寸和/或形状被选择为使得尾部的近端的节拍相对于节拍被限制 并且使得头部在外部交变磁场的作用下不围绕平行于轨迹的轴线执行完整的旋转。

    Self-assembling MEMS devices having thermal actuation
    17.
    发明授权
    Self-assembling MEMS devices having thermal actuation 有权
    具有热驱动的自组装MEMS器件

    公开(公告)号:US07749792B2

    公开(公告)日:2010-07-06

    申请号:US10558469

    申请日:2004-06-02

    Abstract: The present disclosure is broadly directed to a method for designing new MEMS micro-movers, particularly suited for, but not limited to, CMOS fabrication techniques, that are capable of large lateral displacement for tuning capacitors, fabricating capacitors, self-assembly of small gaps in CMOS processes, fabricating latching structures and other applications where lateral micro-positioning on the order of up to 10 μm, or greater, is desired. Principles of self-assembly and electro-thermal actuation are used for designing micro-movers. In self-assembly, motion is induced in specific beams by designing a lateral effective residual stress gradient within the beams. The lateral residual stress gradient arises from purposefully offsetting certain layers of one material versus another material. For example, lower metal layers may be side by side with dielectric layers, both of which are positioned beneath a top metal layer of a CMOS-MEMS beam. In electro-thermal actuation, motion is induced in specific beams by designing a lateral gradient of temperature coefficient of expansion (TCE) within the beams. The lateral TCE gradient is achieved in the same manner as with self-assembly, by purposefully offsetting the lower metal layers with layers of dielectric with respect to the top metal layer of a CMOS-MEMS beam. A heater resistor, usually made from a CMOS polysilicon layer, is embedded into the beam or into an adjacent assembly to heat the beam. When heated, the TCE gradient will cause a stress gradient in the beam, resulting in the electro-thermal actuation. Because of the rules governing abstracts, this abstract should not be used to construe the claims.

    Abstract translation: 本公开广泛地涉及用于设计新的MEMS微动幅器的方法,其特别适用于但不限于CMOS制造技术,其能够用于调谐电容器的大横向位移,制造电容器,小间隙的自组装 在CMOS工艺中,制造闭锁结构和其它应用,其中需要高达10μm或更大的横向微定位。 自组装和电热驱动的原理用于设计微动员。 在自组装中,通过在梁内设计横向有效残余应力梯度,在特定梁中引起运动。 侧向残余应力梯度是由有目的地抵消一种材料的某些层与另一种材料相抵消的。 例如,下金属层可以与电介质层并排,它们均位于CMOS-MEMS光束的顶部金属层的下方。 在电热驱动中,通过设计横梁内的温度膨胀系数(TCE)的横向梯度,在特定光束中感应运动。 横向TCE梯度以与自组装相同的方式实现,通过相对于CMOS-MEMS光束的顶部金属层有目的地抵消具有电介质层的下部金属层。 通常由CMOS多晶硅层制成的加热电阻器被嵌入光束或相邻组件中以加热光束。 加热时,TCE梯度将导致光束中的应力梯度,导致电热致动。 由于管理摘要的规则,本摘要不应用于解释索赔。

    Nanoelectromechanical bistable cantilever device
    19.
    发明授权
    Nanoelectromechanical bistable cantilever device 有权
    纳米机电双稳悬臂装置

    公开(公告)号:US07612424B1

    公开(公告)日:2009-11-03

    申请号:US11385970

    申请日:2006-03-21

    Abstract: Nano-electromechanical device having an electrically conductive nano-cantilever wherein the nano-cantilever has a free end that is movable relative to an electrically conductive substrate such as an electrode of a circuit. The circuit includes a power source connected to the electrode and to the nano-cantilever for providing a pull-in or pull-out voltage therebetween to effect bending movement of the nano-cantilever relative to the electrode. Feedback control is provided for varying the voltage between the electrode and the nano-cantilever in response to the position of the cantilever relative to the electrode. The device provides two stable positions of the nano-cantilever and a hysteresis loop in the current-voltage space between the pull-in voltage and the pull-out voltage. A first stable position of the nano-cantilever is provided at sub-nanometer gap between the free end of the nano-cantilever and the electrode with a pull-in voltage applied and with a stable tunneling electrical current present in the circuit. A second stable position of the nano-cantilever is provided with a pull-out voltage between the cantilever and the electrode with little or no tunneling electrical current present in the circuit. The nano-electromechanical device can be used in a scanning probe microscope, ultrasonic wave detection sensor, NEMS switch, random access memory element, gap sensor, logic device, and a bio-sensor when the nano-cantilever is functionalized with biomolecules that interact with species present in the ambient environment be them in air or aqueous solutions. In the latest case, the NEMS needs to be integrated with a microfluidic system.

    Abstract translation: 具有导电纳米悬臂的纳米机电装置,其中纳米悬臂具有可相对于例如电路的电极的导电基底移动的自由端。 电路包括连接到电极和纳米悬臂的电源,用于在其间提供拉入或拉出电压,以实现纳米悬臂相对于电极的弯曲运动。 提供反馈控制以响应于悬臂相对于电极的位置来改变电极和纳米悬臂之间的电压。 该器件在引入电压和拉出电压之间的电流 - 电压空间中提供了纳米悬臂的两个稳定位置和滞后回路。 在纳米悬臂的自由端和电极之间的亚纳米间隙处提供纳米悬臂的第一稳定位置,其中施加了拉入电压并且在电路中存在稳定的隧道电流。 纳米悬臂的第二稳定位置在悬臂和电极之间提供拉出电压,电路中存在很少或没有隧道电流。 纳米机电装置可用于扫描探针显微镜,超声波检测传感器,NEMS开关,随机存取存储元件,间隙传感器,逻辑器件和生物传感器,当纳米悬臂用与生物分子相互作用的功能化 在环境环境中存在的物质是它们在空气或水溶液中。 在最新的情况下,NEMS需要与微流体系统集成。

Patent Agency Ranking