Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
This invention relates to a threaded joint for steel pipes which comprises a pin and a box each having a contact surface including a threaded portion and an unthreaded metal contact portion and which guarantees galling resistance and gas tightness in a stable manner without application of a compound grease. A solid lubricating coating comprising a lubricating powder (e.g., molybdenum disulfide) and an organic or inorganic binder is formed on the contact surface of at least one of the pin and the box. The proportion of area of a cross section along the thickness of the solid lubricating coating which is occupied by secondary particles of the lubricating powder having an equivalent circular diameter of 15-60 nullm is from 5-90%. Alternatively, the solid lubricating coating comprises, in addition to the lubricating powder, a fibrous filler (e.g., inorganic whiskers) in such an amount that the mass ratio of the fibrous filler to the binder is 0.01-0.5. As a result, galling resistance is improved, particularly at high temperatures.
Abstract:
This invention discloses a thermoconducting silicone composition comprising the following components (A)-(F), whereof the viscosity at 25null C. before curing is 10-1000 Panulls, a method of installing this composition, a heat dissipating structure of a semiconductor device using the same, and a cured material formed by heating this composition in two steps. Component (A): 100 weight parts of an organopolysiloxane having at least two alkenyl groups in the molecule, and a viscosity of 10-100,000 mm2/s at 25null C., Component (B): An organohydrogenpolysiloxane having at least two hydrogen atoms bonded directly to silicon atoms in the molecule, in an amount such that (total number of hydrogen atoms bonded directly to silicon atoms/total number of alkenyl groups in Component (A)) is 0.5-5.0, Component (C): A low melting metal powder having a melting point of 40-250null C., and an average particle size of 0.1-100 micrometers, Component (D): A highly thermoconducting filler having a melting point of more than 250null C., and an average particle size of 0.1-100 micrometers, the total amount of component (C) and Component (D) being 800-2,200 weight parts, and (C)/((C)null(D))null0.05-0.9, Component (E): A catalytic platinum selected from a group comprising platinum and platinum compounds, 0.1-500 ppm relative to Component (A) calculated in terms of platinum atom, Component (F): 0.001-5 weight parts of a controlling agent which suppresses the catalytic activity of Component (E).
Abstract:
A composition of matter for depositing a thin anti-friction film that has a coefficient of friction of 0.06 or less. The composition comprises (a) a mixture of solid lubricant particles, a thermoset resin, and a catalyst for setting the resin, and (b) an evaporative medium for carrying the mixture during deposition. A solid film lubricant system for protecting metal wear interfaces subject to high temperatures and wet lubrications, comprising an oil-attracting solid lubricant mixture with at least two elements selected from the group of graphite, MoS.sub.2 and BN; a support for the mixture to loads of at least 10 psi at temperatures of 600.degree.-800.degree. F. while being thermally stable; a thermally stable thermoset polymer matrix, the polymer having inherent hydrocarbon chemical attraction to form a tenacious oil film of the lubricating oil on the wearing surface. A method of making anti-friction coated surfaces comprising providing a light metal based cylinder surface; exposing nonoxidized metal of the surface; applying a high elastic modulus load-supporting metal layer onto at least portions of the light metal cylinder surface; and simultaneously distributing a solvent-based solid film lubricant mixture and thermoset polymer onto at least portions of the layer at about room temperature to form a coating of desired thickness.
Abstract:
A lubricant for the topical application to objects that will contact various forms of water, e.g., liquid, snow, ice, or mixtures thereof, to reduce friction and thereby increase speed, glide and maneuverability. The lubricant consists essentially of hexagonal boron nitride and a binder of single or mixed oxides or organics, the boron nitride content (after drying) being from about 36 wt. % to about 99 wt. %. Binders of particular interest are water-based colloidal aluminum oxide and colloidal silicon dioxide. This lubricant is suitable for topical applications in a thin layer to various sports objects, such as skis, snowboards, ice skates, snowmobiles, toboggans, sleds, boats, etc., where reduced friction, and thus higher speed, glide and maneuverability is desired. Although a solid stick form (by drying or pressure-less sintering) is preferred, the lubricant can be in the form of a paste or a powder. Further, this lubricant can be incorporated into waxes of the type previously used for friction reduction to obtain the benefit of both.
Abstract:
A noble metal and solid-phase lubricant composition and an an electrically conductive interconductor including the electrically conductive composition are disclosed. The electrically conductive composition includes a noble metal component and a solid-phase lubricant component. The solid-phase lubricant component is present in an amount sufficient to cause the electrically conductive composition to have a coefficient of friction which is significantly lower than the coefficient of friction of the noble metal component without causing the electrically conductive composition to be significantly less malleable than the noble metal component, nor to be significantly less corrosion resistant than the noble metal component. The electrically conductive composition can form a contact layer of the electrically conductive interconnector. The contact layer is bonded to a diffusion barrier which, in turn, is bonded to a bulk electrical conductor of the electrically conductive interconnector.
Abstract:
A solid lubricating composition useful for lubricating the flanges of railcar wheels and rails and for other similar applications. The lubricant composition comprises from about 16% to about 25% by weight of a polymeric carrier, from about 49% to about 63% of a lubricating oil, from about 10% to about 16% of a solid lubricating powder, and from about 6% to about 16% of a surface active agent, all percentages by weight of the total composition. The solid lubricant composition is mixed and introduced into a screw type extruder wherein it is heated and extruded through a die into a waterbath, forming an elastic rod or strand. The lubricant composition is applied to a surface to be lubricated by rubbing it onto the surface in a thin film. The surface active agent enhances the attachment and embedment of the dry lubricating powder into the surface being lubricated, the lubricant composition serving to reduce both wear and friction between contacting surfaces lubricated thereby.