Abstract:
A solid lubricant and composition useful for lubricating the flanges of locomotive wheels, railcar wheels, rail tracks and in applications where it is desirable to reduce friction when metal contacts metal. The solid lubricant having from about 25% to about 70% by volume of a biopolymer polymeric carrier, about 5% to 75% percent by volume of organic and inorganic extreme pressure additives, about 0% to 20% by volume synthetic extreme pressure anti-wear liquid oil, and about 0% to 1% by volume optical brightener.
Abstract:
With a powdered lubricant composition by the invention, in addition to the blending of one of anhydrous, pentahydrate or decahydrate salt in sodium borate and one of sodium or calcium salt of fat acid, mixing calcium or lithium carbonate as an auxiliary lubricant can prevent sodium borate (Na2B4O7), solidified as amorphous after a tube-making process, from moisture absorbance, drying and crystallization to thereby suppress the formation of Na2B4O7.5H2O on inside surfaces of finished-product tubes, thus enabling to circumvent occurrence of the white scales. Concurrently, they provide good diffusivity toward the working surface of workpiece, thus enabling to prolong a life of the mandrel bar and to widely be adopted as the most suitable powdered lubricant for manufacturing seamless tubes by Mandrel Mill rolling.
Abstract translation:通过本发明的粉末状润滑剂组合物,除了在硼酸钠和脂肪酸的钠盐或钙盐之一中的无水五水合物或十水合物盐之一的混合之外,混合碳酸钙或碳酸锂作为辅助润滑剂可以防止硼酸钠 (Na2B4O7),在制管过程中固化为无定形,从吸湿度,干燥和结晶,从而抑制成品管内表面上形成Na 2 B 4 O 7·5H 2 O,从而能够绕过白色鳞片的发生。 同时,它们对工件的工作表面提供良好的扩散性,从而能够延长芯棒的使用寿命,并被广泛地用作通过心轴轧机轧制制造无缝管的最合适的粉末润滑剂。
Abstract:
The present invention provides a lubricant for hot metal working which is capable of inhibiting generation of white scale, attributed to the lubricant, on the surface of a workpiece material and is capable of improving lubricity to obtain favorable appearance of the finished product. The lubricant for hot metal working comprises a silicate compound used for adding to a lubricant composition mainly containing sodium borate.
Abstract:
Particles each of which consists of an inorganic polyvalent metal compound as a nucleus and a coating of a metallic soap of the polyvalent metal coating the nucleus (coated particles); products and preparation processes using the particles; a lubricating coating forming agent wherein particles each of which consists of a polyvalent metal salt of phosphoric acid as a nucleus and a coating of a metallic soap of the polyvalent metal coating the surface of the nucleus are suspended in an aqueous solution of a water soluble inorganic salt and/or a water soluble organic acid salt; and a lubricating coating. The coated particles are novel particles which can be used as an ingredient of coating-type lubricating coating; are excellent in seizure resistance; can inhibit wear of tools at the time of plastic working since the friction coefficient of the surface of the particles is low; and are slow to cause pollution of working oils. Lubricating coating obtained by applying the lubricating coating forming agent onto the surface of a metallic material gives excellent cold plastic working properties, namely lubricity and seizure resistance to the metallic material.
Abstract:
The present invention provides compositions and products, such as waxes and lubricants, comprising a plurality of nanoparticles dispersed in a continuous phase comprising a vegetable oil derived material, such as one or more vegetable oils or a synthetic product derived from one or more vegetable oils. Incorporation of nanoparticles in the present compositions is beneficial for providing mechanical, thermal and/or chemical properties useful for a selected product or product application. In some compositions of the present invention, for example, incorporation of the nanoparticle component provides compositions derived from one or more vegetable oils exhibiting enhanced mechanical stability, hardness, viscosity, thermal stability and mechanical strength.
Abstract:
A threaded joint for steel pipes comprised of a pin 1 and a box 2 each having a threaded portion (1a, 2a) and an unthreaded metal contact portion (1b, 2b) exhibits adequate leakage resistance and galling resistance when used for makeup of oil country tubular goods with application of a green dope or even without any dope. The threaded joint has a first plating layer of Sn—Bi alloy plating or Sn—Bi—Cu alloy plating formed on the contact surface of at least one of the pin 1 and the box 2. The first plating layer may have a second plating layer selected from Sn plating, Cu plating, and Ni plating on its lower side and at least one layer of a lubricating coating, and particularly a solid lubricating coating, on its upper side.
Abstract:
The elevated temperature forming of magnesium based alloy workpieces by stretching, drawing, bending (or the like) a surface of the heated workpiece over the forming surface of a forming tool is improved by forming an integral adherent layer of magnesium hydroxide on the tool-contacted surface(s) of the magnesium alloy workpiece. The magnesium hydroxide layer may be formed by treating the surface(s) of the sheet with an aqueous salt solution (e.g., sodium chloride) at a temperature and for a time to form a protective layer of desired thickness (e.g., up to about thirty micrometers). If desired, an additional layer of forming lubricant, such as a film comprising boron nitride, may be applied to the magnesium hydroxide layer.
Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
An lubricant for electrophotography is applied to a latent image carrier that is supplied with toner having a sphericity of 0.94 or more. The lubricant for electrophotography is added with an inorganic additive having the following relationship: 2Y/1000≦X≦Y/10where Y is a toner particle size (micrometer), and X is an inorganic additive particle size (micrometer).
Abstract translation:将用于电子照相的润滑剂施加到具有球形度为0.94以上的调色剂的潜像载体上。 加入电子照相用润滑剂,添加具有以下关系的无机添加剂:<?in-line-formula description =“In-line formula”end =“lead”→> 2Y / 1000 <= X <= Y / in-line-formula description =“In-line Formulas”end =“tail”?>其中Y是调色剂颗粒尺寸(微米),X是无机添加剂粒度(微米)。
Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.