Abstract:
A chip resistor includes a resistive element, a pair of electrodes, and heat radiator plates. The resistive element is made of a plate-shaped metal. The pair of electrodes is formed on both ends of a first surface of the resistive element. The heat radiator plates are fastened to a second surface of the resistive element and are disposed spaced apart from each other via a gap therebetween.
Abstract:
A chip resistor may include: a body having a plurality of substrates stacked therein; a plurality of resistors formed in the body with respective substrates interposed therebetween and exposed through both end surfaces of the body; and first and second electrodes covering both end surfaces of the body, respectively, and connected to both end portions of the exposed resistors, respectively.
Abstract:
A resistor component is provided, including a ceramic bar having a film applied thereon, a protection layer formed on the film in a middle portion of the ceramic bar, an end plating layer formed on the film at two ends of the ceramic bar, an insulation layer formed on the protection layer, and a color coded marking formed on the insulation layer that indicates the resistance of the resistor component. The end plating layer is formed by a barrel plating method and includes copper, tin, nickel and a combination thereof. The resistor component thus has a low cost and is manufactured by a simple process, simultaneously avoids the occurrence of pores or incompletely sealed join that may be caused by the prior method. Therefore the resistor component has high reliability.
Abstract:
The disclosure provides a chip resistor including: a substrate, two first electrodes, two second electrodes, a resistive layer, at least one protection layer and at least one coating layer. The protection layer covers part of the two first electrodes, and includes at least two overlay sides and at least one overlay plane. The coating layer covers the at least two overlay sides, the at least one overlay plane, and part of the two first electrodes and the two second electrodes. The chip resistor uses the two overlay sides and the overplay plane to extend a distance between the two first electrodes and the outside. Therefore, it is difficult for the airborne sulfur, sulfides and sulfur-containing compounds to enter and react with the two first electrodes. Thus, the chip resistor can resist corrosion of harmful substances such as sulfur, sulfides and sulfur-containing compounds or halogens on the electrodes.
Abstract:
The chip part of the present invention includes a substrate, an electrode on the substrate and having a front surface in which a plurality of recessed portions are formed toward the thickness direction thereof, and an element region having a circuit element that is electrically connected to the electrode.
Abstract:
A resistor device includes a resistor plate having opposite first and second surfaces; a first metal layer including first and second portions which are disposed on the first surface of the resistor plate at opposite first and second sides, respectively; and a second metal layer including a first sensing pad, a second sensing pad, a first current pad and a second current pad, separate from one another, wherein the first sensing pad and the first current pad are disposed on the first portion of the first metal layer and the second sensing pad and the second current pad are disposed on the second portion of the first metal layer. A protective layer is preferably provided, overlying the resistor plate and the first metal layer uncovered by the second metal layer.
Abstract:
[Object]A chip resistor suitable for enhancing manufacturing efficiency is provided.[Means]A chip resistor includes a first electrode 1, a second electrode 2, a resistor portion 3, a first intermediate layer 4 connected to the first electrode 1 and the resistor portion 3, a second intermediate layer 5 connected to the second electrode 2 and the resistor portion 3, a coating film 61 covering the first electrode 1, and oxides existing in the first intermediate layer 4. The coating film 61 is made of a material having a higher absorptance of a laser beam of a predetermined wavelength than that of the material forming the first electrode 1. The oxides are oxides of the material forming the coating film 61.
Abstract:
A multilayer ceramic substrate includes a ceramic laminated body including a plurality of ceramic layers stacked on each other, a resistor, and a resistor connecting conductor with a portion overlapping the resistor and an overcoat layer that covers the resistor located on a principal surface of the ceramic laminated body. An overcoat layer is made relatively thick during firing, thereby making cracks less likely to be caused, and after the firing step, the thickness of the overcoat layer is reduced by physically scraping down the surface of the overcoat layer, thereby reducing the trimming time. In the overcoat layer, a region that covers a portion in which a resistor overlaps a resistor connecting conductor is thicker than a region that covers the other portion.
Abstract:
A fabrication method of an alloy resistor includes: providing an alloy sheet having a plurality of openings spacing apart from each other and going through the alloy sheet and a plurality of alloy resistor units located between any two adjacent openings, wherein each of the alloy resistor units has an insulating cover area and a plurality of electrode ends on both sides of the insulating cover area; forming an insulating layer on a surface of the insulating cover area of the alloy resistor units by an electrodeposition coating process; cutting the alloy along a connecting portion, so as to obtain separated alloy resistor units; and forming a conductive adhesion material on the electrode ends of the alloy resistor units. An alloy resistor having an insulating layer with a smooth surface can be obtained by performing an electrodeposition coating process.
Abstract:
There is provided a dielectric composition, including; a base powder including BamTiO3 (0.995≦m≦1.010); a first sub-component including 0.05 to 4.00 moles of an oxide or carbonate containing at least one rare-earth element based on 100 moles of the base powder; a second sub-component including 0.05 to 0.70 moles of an oxide or carbonate containing at least one transition metal; a third sub-component including 0.20 to 2.00 moles of a Si oxide; a fourth sub-component including 0.02 to 1.00 mole of an Al oxide; and a fifth sub-component including 20 to 140% of an oxide containing at least one of Ba and Ca, based on the third sub-component.