Abstract:
A plasma display device is realized which has a high set-luminous-efficacy (i.e. provides a high-brightness display image at a low power consumption) and a high light-room contrast. The luminous efficacy hs and the display discharge voltage Vs are increased by increasing the product pd in discharge, or increasing the Xe proportion aXe of the discharge. As a result the display-discharge region area ratio Ad and the display region reflectance β can be reduced by reducing the display-electrode area Sse approximately in inverse proportion to Vs2, and thereby the set-luminous efficacy hs and the set luminance Bpons and the light-room contrast Cb are increased.
Abstract:
A plurality of row electrodes and a plurality of column electrodes are provided so as to intersect with each other to form a pixel at every intersection. A phosphor layer is provided along each of the column electrodes. The phosphor layer is disposed so that three unit luminous areas of red, green and blue are provided in each pixel. Three phosphor layers for a first pixel on a display line are disposed in order of red, green and blue, and three phosphor layers for a second pixel adjacent the first pixel are disposed in order of blue, green and red.
Abstract:
A plasma display panel and driving method thereof perform addressing at a high speed and a low voltage without deteriorating contrast. Priming electrodes forming priming cells are located outside but adjacent a display area. Glow occurring in the priming cells is intercepted. When priming discharge is induced at a reset step, voltages lower than a discharge start voltage are applied to first (X) and second (Y) electrodes and third (address) electrodes respectively. Despite the voltages being lower than the discharge start voltage, once discharge is induced in the priming cells, discharge starts in adjoining cells. The discharge then spreads successively over all the cells, thus inducing discharge in all the cells. Consequently, wall charge is produced in all the cells.
Abstract:
To increase heat dissipation from a plasma display panel, a heat sinking unit 2 bonded to a curved back surface 11 of a panel unit includes a large number of fin blocks 21 arranged spaced apart from each other by a prescribed distance and a flexible thin-wall portion 22, and a joining section 221, which consists of fin anchoring portions 212 and thin-wall portions 22, is capable of being bent between the fin blocks 21, thus allowing the heat sinking unit 2 to conform to the curvature of the panel unit back surface 11.
Abstract:
In order to reduce the address voltage in a gas discharge type display pane, the address electrodes in the display panel are formed on the barrier ribs. Further, a fluorescent layer is coated on the wall surface of the barrier ribs thereby suppressing erroneous light emission or degradation of the fluorescent layer during address discharge.
Abstract:
A plasma display panel with an increased display contrast improves a visibility of the display at low costs. A green light absorbing filter is provided on the outer surface of a substrate on the display surface side and a monochromatic light transmitting filter corresponding to at least one of red and blue fluorescent material layers which face each other through a discharge space is provided on the inner surface of the substrate on the display surface side. The green light absorbing filter is provided on the outer surface of the substrate on the display surface side and at least one of the red and blue fluorescent material layers is formed by a fluorescent material layer colored so as to absorb the light in wavelength regions other than the corresponding monochromatic light.
Abstract:
A plasma display device having a face plate and a rear plate spaced apart from each other. Parallel sustaining electrodes are arranged preferably on the face plate, while parallel address electrodes are arranged preferably on the rear plate, so that they are spaced apart from and extend perpendicularly to the sustaining electrodes. Barrier ribs are disposed to define discharge gas spaces adjacent to crossovers of the electrodes. At least some of the barrier ribs are transparent barrier ribs made of a light-permeable material, so that, particularly when the rear plate is covered with a reflective layering, light which might otherwise leak from the rear plate is usefully saved and caused to radiate through the face plate, whereby the use ratio of the emitted light increases.
Abstract:
A gas discharge image display is formed by disposing a plurality of fluorescent lamps 1 each comprising a glass bulb 2 within which a rare gas is sealed, one or more pairs of external electrodes 5a and 5b located on the outer wall of the glass bulb 2, and a fluorescent layer 3 formed on the inner wall of the container facing the external electrodes 5a and 5b. An alternating voltage pulse is applied between the paired external electrodes 5a and 5b by an X drive circuit 9 and a Y drive circuit 10 for discharge light emission, thereby displaying an image. The pressure and alternating voltage in the fluorescent lamp 1 are changed in response to the type of fluorescent material, thereby making near light emission and discharge characteristics of the discharge lamps which differ in electric characteristics.
Abstract:
A plasma display device is provided with one substrate having a plurality of electrode drawing-out portions extending up to a side end thereof for applying an AC voltage to X side electrodes each independently, a second substrate having a plurality of electrode terminal portions formed independently on its electrode-disposed surface, the plural electrode terminal portions being electrically connected respectively to the plural electrode drawing-out portions by a connector portion. The connection of each of the X and Y electrodes with an external power source can thus be made on only the Y side electrode-disposed surface of the second substrate. Besides, the shape of the substrates is simplified.
Abstract:
An optical sheet, which can suitably absorb external light over a wide range and can improve a contrast, a display device, and a method for producing an optical sheet. The optical sheet is disposed on an observer side relative to an image light source and includes: a plurality of layers that control light emitted from the image light source to emit the light on the observer side, wherein at least one of the plurality of layers is an optical functional sheet layer which includes prisms being arranged in parallel along the surface of the optical sheet whereby light can be transmitted and wedge portions are arranged in parallel between the prisms whereby light can be absorbed. At least one of the plurality of layers other than the optical functional sheet layer is a light-absorbing layer.