Abstract:
An ablation apparatus has a multiple antenna device of adjustable length including an adjustable length primary antenna and an adjustable length secondary antenna. The primary antenna has a longitudinal axis, and the secondary antenna is deployed in a direction lateral to the longitudinal axis. The secondary antenna is constructed to be structurally less rigid than the primary antenna. The adjustable lengths of the primary and secondary antennas permits a desired geometric ablation of a selected tissue mass. An adjustable insulation sleeve is positioned on an exterior of one of the primary or secondary antennas. An energy source is connected to the multiple antenna device. A variety of energy sources can be used including RF, microwave and laser.
Abstract:
A medical probe device comprising a catheter having a stylet guide housing with at least one stylet port in a side thereof and stylet guide means for directing a flexible stylet outward through at least one stylet port and through intervening tissue to targeted tissue. The stylet comprises an electrical central conductor which is enclosed within an insulating or dielectric sleeve surrounded by a conductive layer terminated by an antenna to selectively deliver microwave or radio frequency energy to target tissue. One embodiment includes the electrical conductor being enclosed within a non-conductive sleeve which itself is enclosed within a conductive sleeve in a coaxial cable arrangement to form a microwave transmission line terminated by an antenna. Another embodiment includes a resistive element near the distal end of the stylet which couples the center electrode to an outer conductor to generate joulian heat as electromagnetic energy is applied, such as an RF signal.
Abstract:
An apparatus and method are provided for control contraction of tissue that includes collagen fibers. The apparatus includes a handpiece, and an electrode with an electrode proximal end associated with the handpiece. A distal end of the electrode has a geometry that delivers a controlled amount of energy to the tissue for a desired contraction of the collagen fibers. This is achieved while dissociation and breakdown of the collagen fibers is minimized. The handpiece, with electrode, is adapted to be introduced through an operating cannula in percutaneous applications. Additionally, an operating cannula may be included in the apparatus and be attached to the handpiece. The apparatus and method provides for a desired level of contraction of collagen soft tissue without dissociation or breakdown of collagen fibers.
Abstract:
An ablation apparatus has an expandable member that is inserted into an organ of a body and ablates all or a selected portion of the inner layer of the organ. Electrolytic solution fills the expandable member, and the expandable member includes a plurality of apertures from which electrolytic solution flows from the expandable member. First and second fluid conduits, which can be first and second conforming members, are in a surrounding relationship to the expandable member. The second conforming member, including a conductive surface, is made of a material that provides substantial conformity between the conductive surface and a shape of the inner layer of the organ. A plurality of electrodes is positioned between the two conforming members. The expandable member serves as an insulator to RF energy. Each electrode includes an insulator formed on a surface of the electrode positioned adjacent to the second conforming member. The combination of sandwiching the electrodes between the two conforming members, and the use of two insulators, one on the electrode and the other on the expandable member, provides selectable ablation of the inner layer of the organ. A feedback device is included and is responsive to a detected characteristic of the inner layer. The feedback device provides a controlled delivery of RF energy to the electrodes.
Abstract:
A medical probe apparatus comprising a catheter having a stylet guide housing with at least one stylet port in a side thereof and stylet guide means for directing a flexible stylet outward through at least one stylet port and through intervening tissue to targeted tissues. The stylet guide has an integrated circuit or semiconductor apparatus at the distal end thereof to generate electromagnetic radiation directly at the point of the desired target tissue. The stylet includes at least one semiconductor or integrated circuit radiation emitter adapted for electromagnetic radiation when electrically energized. An elongated electrical insulator includes proximal and distal ends adapted to be introduced into a body opening, such as the urethra. First and second elongated electrical conductors are electrically isolated by the insulator. The distal ends of the electrical conductors are connected to the semiconductor, so that electrical energy coupled to the proximal ends of the conductors energizes the semiconductor to cause radiation. In a particular embodiment of the invention, the semiconductor radiation emitter(s) is (are) a laser(s). In another embodiment, it is a microwave oscillator or integrated circuit. In yet another embodiment, two types of semiconductor radiator emitters are located distally on the catheter, and each type is connected to one of the electrical conductors. According to one aspect of the invention, a third conductor may be connected in common to both types of semiconductor radiation emitters. The stylet may include an antenna to aid in coupling radiation from a semiconductor radiation emitter to the surrounding tissue. The stylet may also include an axial aperture adapted for use with a guide filament.
Abstract:
A method for the treatment of benign prostatic hypertrophy in the prostate of the human male having a bladder with a base and a penis with a urethra therein formed by a urethral wall extending into the base of the bladder along a longitudinal axis with the prostate having tissue surrounding the urethral near the base of the bladder comprising selecting a target volume of the tissue of the prostate beyond the urethral wall, introducing radio frequency energy through the urethral wall into the target volume of the tissue of the prostate to cause ablation of tissue in the target volume of the tissue in the prostate and protecting the urethral wall from ablation by the radio frequency energy supplied to the target volume of tissue in the prostate.
Abstract:
An electrode assembly for use in interventricular cardiac mapping includes one or more elongated splines each of which carries a plurality of spaced apart electrodes thereon. The body of each spline is formed of a plurality of alternating electrically conductive layers and the electrically non-conductive layers. A separate electrically conductive pathway is provided to connect each of the electrodes to a different one of the conductive layers. Each of the layers is electrically connected to an electrical signal processing device so that signals provided by each of the electrodes can he processed.
Abstract:
An ablation apparatus has a balloon that is inserted into an organ of a body and ablates all or a selected portion of the inner layer of the organ. Electrolytic solution fills the balloon, and the balloon includes a plurality of apertures from which electrolytic solution flows from the balloon. The flow rate of electrolytic solution is dependent on the pressure applied to the balloon by the electrolytic solution. A conforming member, with a conductive surface and a back side, is made of a material that substantially conforms to a shape of the inner layer of the organ and delivers the electrolytic solution and RF energy through the conductive surface to the inner layer. Advantageously, difficult to access areas are reached with the inclusion of the conforming member. Optionally positioned between the conforming member and the balloon is a porous membrane. A printed circuit is printed in or on the conforming member and delivers RF energy to selected sections of the inner layer. The printed circuit provides for the monitoring of impedance, temperature and circuit continuity. Additionally, the printed circuit can be multiplexed.
Abstract:
An improved probe for cardiac diagnosis and/or treatment includes a control handle and a catheter for insertion into the heart. The catheter has a distal end, a proximal end and at least one lumen connecting said distal and proximal ends. It also includes a flexible inner tube and an outer sheath enveloping said tube. At least one measuring electrode or ablation device is attached to the distal end of the tube. The outer sheath and the inner tube are rotatable relative to each other so that the electrode or device can be rotated within the heart without rotating the outer sheath. The sheath is also axially movable relative to the tube to selectively enclose or expose the electrode or device for use.
Abstract:
An apparatus and method are provided for control contraction of tissue that includes collagen fibers. The apparatus includes a handpiece, and an electrode with an electrode proximal end associated with the handpiece. A distal end of the electrode has a geometry that delivers a controlled amount of energy to the tissue for a desired contraction of the collagen fibers. This is achieved while dissociation and breakdown of the collagen fibers is minimized. The handpiece, with electrode, is adapted to be introduced through an operating cannula in percutaneous applications. Additionally, an operating cannula may be included in the apparatus and be attached to the handpiece. The apparatus and method provides for a desired level of contraction of collagen soft tissue without dissociation or breakdown of collagen fibers.