Abstract:
An adhesive construction, characterized by excellent converting and adhesive performance, comprises a facestock, a face-side adhesive (FSA) in contact with a first surface of the facestock, and a liner-side adhesive (LSA) in contact with the FSA. The FSA is compounded with an organopolysiloxane or modified organopolysiloxane. Single layer constructions, and multilayer constructions comprising more than two adhesive layers, and unique adhesive compositions, are also provided. The constructions can be run in high-speed converting presses and adhere well to a variety of substrates.
Abstract:
An anisotropic conductive adhesive film contains a first insulating adhesive layer, a second insulating adhesive layer whose modulus of elasticity after curing is less than the modulus of elasticity of the cured first insulating adhesive layer, and electrically conductive particles which are dispersed in at least either the first insulating adhesive layer or the second insulating adhesive layer.
Abstract:
A multilayer PSA construction includes a facestock, a hazy, first adhesive layer adjacent the facestock, and a PSA layer adjacent the first adhesive layer, and is protected until use by a release liner. The first adhesive layer includes an immiscible blend of a first elastomer having a first glass transition temperature and forming a continuous phase, and a second elastomer forming a discontinuous phase. The second elastomer has a glass transition temperature greater than the first glass transition temperature. The first adhesive layer also contains a tackifying component, which is preferentially soluble in the discontinuous phase. The PSA layer has a composition different from the first adhesive layer and is formed of at least one tackified elastomer that provides a measurable third maximum glass transition temperature, which is less than the second glass transition temperature. The multilayer PSA construction exhibits reduced migration of tackifiers and plasticizers over time.
Abstract:
According to some embodiments of the invention, a method for bookbinding is provided. The method comprises placing a strip of hot-melt adhesive tape between a spine of a book block and a central region of a cover. The hot-melt adhesive tape comprises a first layer having a first hot-melt adhesive substance having a first viscosity and a second layer having a second hot-melt adhesive substance having a second viscosity that is higher than the first viscosity when heated. The strip of the hot-melt adhesive is placed such that the first layer of the tape is positioned next to the spine and the second layer is positioned next to the central region of the cover.
Abstract:
The invention provides a method for thermally releasing an adherend, which comprises selectively releasing one or some of a plurality of substances adhered on a thermally releasable pressure-sensitive adhesive sheet having a thermally expandable layer containing therein thermo-expandable microspheres, by partly heating the pressure-sensitive adhesive sheet using a heating unit capable of partly heating the pressure-sensitive adhesive sheet. This thermally releasing method may further involve a step of cutting the substance adhered to the pressure-sensitive adhesive sheet. In this occasion, the heating unit has a heating portion of a shape in conformity with the shape of the adherend to be released, and may be provided on at lease one of the side to which the adherend is adhered and the opposite side thereto of the pressure-sensitive adhesive sheet.
Abstract:
A process for the production of a thinned wafer, comprising bonding the circuit surface (surface A) of a semiconductor wafer (a) to a holding substrate (b) with an adhesive film (c), grinding and polishing the back surface (surface B) of the semiconductor wafer to thin the semiconductor wafer, carrying out the metallization of the back surface (surface B) and the like as required, and then separating the thinned wafer from the holding substrate (b), wherein a thermoplastic resin film is used as the adhesive film (c) and the above bonding of the circuit surface (surface A) of the semiconductor wafer (a) to the holding substrate (b) is carried out at a bonding temperature selected from the range of from null10null C. to null120null C. of glass transition point of the thermoplastic resin film or the range of from null40null C. to null20null C. of melting point of the thermoplastic resin film.
Abstract:
The present invention relates to an adhesive transfer device for selectively making a repositionably adherable substrate from a selected substrate. The device comprises a base substrate, a layer of pressure-sensitive repositionable adhesive disposed on the base substrate, a layer of pressure-sensitive permanent adhesive disposed adjacent to the repositionable adhesive layer opposite the base substrate, and structure providing a release surface. The release surface is removably engaged with the permanent adhesive layer opposite the repositionable adhesive layer and the base substrate so as to cover the permanent adhesive layer. The nature of the release surface is such that the base substrate and the structure providing the release surface can be moved apart from one another so as to separate the release surface from the permanent adhesive layer and leave both of the adhesive layers on the base substrate with the permanent adhesive layer exposed, thereby enabling the selected substrate to be adhesively bonded to the exposed permanent adhesive layer. The adhesive layers are provided such that, after the selected substrate has been adhesively bonded to the permanent adhesive layer, the base substrate and the selected substrate can be moved apart from one another so as to separate the base substrate from the repositionable adhesive layer and leaving both the adhesive layers on the selected substrate with the repositionable adhesive layer exposed, thereby allowing the selected substrate to be repositionably adhered to a contact surface by engaging the exposed repositionable adhesive layer with the contact surface. A number of various devices embodying the principles of the present invention are disclosed in the present application, including a tablet having a plurality of adhesive transfer sheets, an adhesive transfer cartridge for use with an adhesive transfer apparatus, and a dispenser for dispensing a length of the base substrate.
Abstract:
The present invention relates to an adhesive transfer device for selectively making a repositionably adherable substrate from a selected substrate. The device comprises a base substrate, a layer of pressure-sensitive repositionable adhesive disposed on the base substrate, a layer of pressure-sensitive permanent adhesive disposed adjacent to the repositionable adhesive layer opposite the base substrate, and structure providing a release surface. The release surface is removably engaged with the permanent adhesive layer opposite the repositionable adhesive layer and the base substrate so as to cover the permanent adhesive layer. The nature of the release surface is such that the base substrate and the structure providing the release surface can be moved apart from one another so as to separate the release surface from the permanent adhesive layer and leave both of the adhesive layers on the base substrate with the permanent adhesive layer exposed, thereby enabling the selected substrate to be adhesively bonded to the exposed permanent adhesive layer. The adhesive layers are provided such that, after the selected substrate has been adhesively bonded to the permanent adhesive layer, the base substrate and the selected substrate can be moved apart from one another so as to separate the base substrate from the repositionable adhesive layer and leaving both the adhesive layers on the selected substrate with the repositionable adhesive layer exposed, thereby allowing the selected substrate to be repositionably adhered to a contact surface by engaging the exposed repositionable adhesive layer with the contact surface. A number of various devices embodying the principles of the present invention are disclosed in the present application, including a tablet having a plurality of adhesive transfer sheets, an adhesive transfer cartridge for use with an adhesive transfer apparatus, and a dispenser for dispensing a length of the base substrate.
Abstract:
A flexible composite substrate is disclosed and includes a flexible carrier, a first adhesive and a second adhesive. The first adhesive is adhered to the flexible carrier and includes ferromagnetic material. The second adhesive is adhered to the first adhesive, and is for removably applying the flexible composite substrate to a receiving surface. The adhesive strength of the second material is greater than the adhesive strength of the first material.
Abstract:
An adhesive bonding laminate includes a first adhesive film that is capable of adhesively bonding to an epoxy coating and a second adhesive film that is capable of adhesively bonding to a stainless steel substrate. The first adhesive film is adhesively bonded to the second adhesive film. Ink jet printheads, ink jet print cartridges and methods of attaching a flexible circuit to a substrate employ the adhesive bonding laminate.