Abstract:
Method of estimating a position variation of a motion of an apparatus between a first instant and a second instant, said motion including a rotation of the apparatus and said position variation, said position variation including a position and a velocity, wherein estimating said position variation comprises performing a particles filtering for estimating said position and velocity from the probabilistic-weighted average of the particles, said particles filter using a known estimation of said rotation and being parameterized for taking into account a quality of said rotation estimation.
Abstract:
An integrated image sensor may include adjacent pixels, with each pixel including an active semiconductor region including a photodiode, an antireflection layer above the photodiode, a dielectric region above the antireflection layer and an optical filter to pass incident luminous radiation having a given wavelength. The antireflection layer may include an array of pads mutually separated by a dielectric material of the dielectric region. The array may be configured to allow simultaneous transmission of the incident luminous radiation and a diffraction of the incident luminous radiation producing diffracted radiations which have wavelengths below that of the incident radiation, and are attenuated with respect to the incident radiation.
Abstract:
A method for securing a data processing system having a processing unit is disclosed. At least a group of N1 digital words of m1 bits is selected from among the set of M1 digital words. N1 is less than M1. These words are selected in such a way that each selected digital word differs from all the other selected digital words by a number of bits at least equal to an integer p which is at least equal to 2. The group of N1 digital words of m1 bits form at least one group of N1 executable digital instructions. The processing unit is configured to make it capable of executing each instruction of the at least one group of N1 executable digital instructions.
Abstract:
An integrated circuit includes a silicon-on-insulator wafer and interconnect layer providing a support for a coplanar waveguide formed above a top side of the support. A through-silicon via is formed from a back side of the support and passing through the silicon-on-insulator wafer to reach the interconnect layer. A trench is formed from the back side of the support underneath the coplanar waveguide. The trench extends over at least an entire length of the coplanar waveguide. The trench passes through the silicon-on-insulator wafer to reach the interconnect layer and may have a substantially same depth as the through-silicon via.
Abstract:
The invention relates to an IC with an electrostatic discharge protection device. There is a buried insulant layer 50 nm or less in thickness and first and second bipolar transistors on the insulant layer, one being an npn transistor and the other a pnp transistor. The base of the first transistor is merged with the collector of the second transistor and the base of the second transistor is merged with the collector of the first transistor. The first and second bipolar transistors are configured to selectively conduct a discharge current between two electrodes of the protection device. There is a first semiconductor ground plane under the insulant layer, being electrically biased, extending until it is plumb with the base of the first bipolar transistor, exhibiting a first type of doping identical to that of the base of the first bipolar transistor with a doping density at least ten times greater.
Abstract:
An integrated circuit includes a silicon-on-insulator substrate that includes a semiconductor film located above a buried insulating layer. A first electrode of a silicide material overlies the semiconductor film. A sidewall insulating material is disposed along sidewalls of the first electrode. A dielectric layer is located between the first electrode and the semiconductor film. A second electrode includes a silicided zone of the semiconductor film, which is located alongside the sidewall insulating material and extends at least partially under the dielectric layer and the first electrode. The first electrode, the dielectric layer and the second electrode form a capacitor that is part of a circuit of the integrated circuit.
Abstract:
A photodetector including a photoelectric conversion structure made of a semiconductor material and, on a light-receiving surface of the conversion structure, a stack of first and second diffractive elements, the second element being above the first element, wherein: the first element includes at least one pad made of a material having an optical index n1, laterally surrounded with a region made of a material having an optical index n2 different from n1; the second element includes at least one pad made of a material having an optical index n3, laterally surrounded with a region made of a material having an optical index n4 different from n3; the pads of the first and second elements are substantially vertically aligned; and optical index differences n1−n2 and n3−n4 have opposite signs.
Abstract:
An electronic device includes a laser source configured to direct laser radiation toward a user's hand. A laser detector is configured to receive reflected laser radiation from the user's hand. A controller is coupled to the laser source and laser detector and configured to determine a plurality of distance values to the user's hand based upon a time-of-flight of the laser radiation, calculate a mean absolute deviation (MAD) value based upon the plurality of distance values, and identify whether the user's hand is moving in a first or second gesture based upon the MAD value.
Abstract:
An integrated image sensor may include adjacent pixels, with each pixel including an active semiconductor region including a photodiode, an antireflection layer above the photodiode, a dielectric region above the antireflection layer and an optical filter to pass incident luminous radiation having a given wavelength. The antireflection layer may include an array of pads mutually separated by a dielectric material of the dielectric region. The array may be configured to allow simultaneous transmission of the incident luminous radiation and a diffraction of the incident luminous radiation producing diffracted radiations which have wavelengths below that of the incident radiation, and are attenuated with respect to the incident radiation.
Abstract:
A method for controlling the breakdown of an antifuse memory cell formed on a semiconductor substrate, including the steps of: applying a programming voltage; detecting a breakdown time; and interrupting the application of the programming voltage at a time following the breakdown time by a post-breakdown time.