Abstract:
The integrated circuit includes a substrate SB incorporating a plurality of electronic components C1, C2 and a seal ring SR around the electronic components. It includes cold spot means VM, PG, BDG disposed between the electronic components and the seal ring. It further includes electrostatic discharge protection means including an electrostatic discharge rail VM around the electronic components and constituting said cold spot means.
Abstract:
An optical semiconductor product includes an integrated circuit chip having an optical sensor in its front face. The chip is attached to a support plate and electrical interconnection is made therebetween. A protective ring is fastened to the front face of the chip, around and at some distance from the optical sensor. A ring of encapsulating material is deposited to surround the periphery of the chip and lie between the front face of the support plate (2) and the protective ring.
Abstract:
A capacitor formed in a substrate including a recess dug into a substrate; a first layer of a dielectric material covering the walls, the bottom and the edges of the recess; a second layer of a conductive material covering the first layer; a third layer of a conductive or insulating material filling the recess; trenches crossing the third layer; a fourth layer of a conductive material covering the walls, the bottoms as well as the intervals between these trenches and the edges thereof; a fifth layer of a dielectric material covering the fourth layer; and a sixth layer of a conductive material covering the fifth layer.
Abstract:
A method for forming, in an integrated circuit, a localized region of a material difficult to etch, including the steps of forming a first silicon oxide layer having a thickness smaller than 1 nm on a silicon substrate; depositing, on the first layer, a second layer selectively etchable with respect to the first layer; forming in the second layer an opening according to the pattern of said localized region; selectively growing on the second layer, around the opening, a germanium layer, the material of the second layer being chosen to enable this selective growth, whereby there exists in the germanium an opening conformable with the above opening; depositing the material difficult to etch so that it does not deposit on the germanium; depositing a conductive layer to fill the opening in the germanium; performing a leveling to expose the germanium; and removing the germanium and the first and second layers.
Abstract:
The invention concerns a vertical component with a four-layered structure comprising a thick lightly-doped zone (1) of a first type of conductivity providing the component voltage strength, enclosed with a peripheral wall (2) of a second type of conductivity extending vertically from one surface to the other of the component, and highly doped layer (3) of the second type of conductivity extending over the entire rear surface of the component. A lightly-doped layer (21) of the second type of conductivity extends over the entire surface of the component at the interface between the lightly-doped thick zone of the first type of conductivity and the highly-doped layer of the second type of conductivity.
Abstract:
A method for determining r error detection bits of a word of m bits to be coded, including the step of calculating the product of a vector with m components representative of said word of m bits to be coded and of a parity check matrix. The parity check matrix includes a pattern matrix that may be repeated in said parity check matrix, and said pattern being chosen so that a sum modulo 2 of any two columns of said sub-matrix does not give as a result another column of said sub-matrix. Another method determines a syndrome using r error detection bits determined by the above method.
Abstract:
A terminal for generating an electromagnetic field adapted to cooperating with at least one transponder when the latter enters its field and including an oscillating circuit adapted to receiving a high-frequency A.C. excitation voltage, circuitry for regulating the signal phase in the oscillating circuit with respect to a reference value, circuitry for determining an instantaneous information relative to the magnetic coupling between the transponder and the terminal, and circuitry for adapting the electromagnetic field power according to at least said present information.
Abstract:
A control signal for controlling a correction circuit for at least one electron beam that scans a screen line by line, the amplitude of which varies along each line according to a curve of a first type determined by line parameters, each of the line parameters varying, from one line to another, according to a curve of the first type determined by column parameters.
Abstract:
In order to display moving images, an input receives a video signal transporting video images. A user interface receives commands input by a user. An input video subsystem continuously generates a first stream of video images on the basis of the input video signal. At least one volatile storage unit stores a sequence of images extracted from the first stream of images, either continuously, or in response to a “record” command given by the user. An output video subsystem generates and displays a second stream of images on the basis selectively of: the first stream of video images, the stored sequence of images, or a combination of the two, in response to an appropriate read command input by the user via the user interface.
Abstract:
A circuit for generating a reference voltage of bandgap type. The circuit includes a current mirror assembly of cascode type including, from a high supply rail, at least two parallel branches of P-channel MOS transistors. The circuit also includes a bipolar assembly in series with one of the branches of the mirror assembly down to a low supply rail, formed of two parallel branches each including, in series, a diode-connected bipolar transistor and, respectively, one resistor and two resistors. The circuit also includes a differential amplifier for balancing the currents in the two branches of the bipolar assembly, the reference voltage being provided by the terminal of interconnection of the mirror assembly with the bipolar assembly.