Abstract:
A Raman probe system includes: a base station; a mobile robot remotely controllable from the base station; a Raman probe assembly supported by the robot, the Raman probe assembly including a laser and a spectrometer; a camera supported by the robot; and a communication subsystem operable to communicate images from the camera and results from the Raman probe assembly to the base station. In some embodiments, a Raman probe system includes: a mobile robot remotely controllable from a base station, the robot including a body and an articulated arm; a camera supported by the robot; a Raman probe assembly supported by the robot, the optical control assembly mounted on the body of the robot; and an optical probe mounted on the articulated arm of the robot; and a wireless communication system operable to communicate images from the camera and results from the Raman probe assembly to the base station.
Abstract:
An apparatus for optical sensing of samples includes an optical source, an optical assembly, a sample holder, an objective lens, and a detector. The objective lens collimates light emitted by the sample. Preferably, the optical assembly rotates about an axis, allowing the sensing apparatus to sense results from plural locations on a sample without moving the sample. Moving the sample in a linear direction while rotating the optical assembly allows sensing of an entire sample. Preferably, light from the optical source enters the optical assembly along the axis of rotation. Sensing methods consistent with the invention are also described.
Abstract:
An apparatus for selected measurement of at least one of luminescent and fluorescent radiation from at least one sample well, the apparatus comprising: means defining an excitation light path for fluorescence measurements; at least one light source in the excitation path; means defining an emission light path; and at least one detector with a wavelength selector in the emission light path, wherein: the apparatus further comprises at least one first reflector element that encompasses a reflection chamber and projects at least a portion of the light emitted from the at least one sample well directionally onto the wavelength selector; the emission light path extends between the at least one sample well and the wavelength selector through the at least one first reflector element; and the excitation light path extends into the reflection chamber and extends to a point above the at least one sample well.
Abstract:
An apparatus for imaging an object comprises a plurality of shutter elements (601, 606, 614) and a sensor (603, 608, 612), each shutter element (601, 606, 614) being operable to control (602, 609, 613) passage of light from a separate spatial location on the object to be imaged, wherein the incident light from the shutters (601, 606, 614) simultaneously illuminates a common area on a sensor (603, 608, 612) surface and wherein the incident light from the different shutters (601, 606, 614) is still individually discernible due to shutter control (602, 609, 613).
Abstract:
An apparatus for generating a Raman signal of a test sample is disclosed. The apparatus includes a first optical path, a second optical path, a first station, and a second station. The first optical path is adapted for coupling with a radiation source that produces a test beam at the first optical path. The first station is responsive to the test beam and is adapted to house a test standard. The second station is responsive to the test beam and is adapted to house the test sample. In response to the test beam, Raman radiation from the test standard and the test sample are combined and directed to the second optical path, which is adapted for coupling with a spectrometer and a detector for producing a Raman spectrum of the test sample.
Abstract:
A method is proposed for detecting at least one chemical compound V contained in a medium (312). The method comprises a verification step (420) which is used to determine whether V is contained in the medium (312). The method furthermore comprises an analysis step (424) in which a concentration c of the at least one chemical compound V is determined.The verification step comprises the following substeps: (a1) the medium (312) is exposed to a first analysis radiation (316) of a variable wavelength λ, the wavelength λ assuming at least two different values; (a2) at least one spectral response function A(λ) is generated with the aid of the radiation (324) absorbed and/or emitted and/or reflected and/or scattered by the medium (312) in response to the first analysis radiation (316); (a3) at least one spectral correlation function K(δλ) is formed by spectral comparison of the at least one spectral response function A(λ) with at least one pattern function R(λ+δλ), the at least one pattern function R(λ) representing a spectral measurement function of a medium (312) containing the chemical compound V and δλ being a coordinate shift; (a4) the at least one spectral correlation function K(δλ) is examined in a pattern recognition step (418), and a conclusion is made as to whether the at least one chemical compound V is contained in the medium (312); The analysis step (424) comprises the following substeps: (b1) the medium (312) is exposed to at least one second analysis radiation (318) having at least one excitation wavelength λEX; (b2) at least one spectral analysis function B(λEX,λRES) is generated with the aid of the radiation (326) of the response wavelength λRES absorbed and/or emitted and/or reflected and/or scattered by the medium (312) in response to the second analysis radiation (318) of the wavelength λEX and the concentration c is deduced therefrom.
Abstract:
The present invention concerns a method and camera for obtaining a high-contrast image of a predetermined target present in an area under observation. The method involves obtaining an in-band image of the observation area including the target using a filter whose bands are aligned with selected characteristic wavelength bands of the target and an out-of-band image of the observation area excluding the target using the filter with its bands non-aligned with the selected characteristic wavelength bands of the target. Processing of the in-band and out-of-band images results in a high-contrast image highlighting the presence of the target in the observation area and thereby allowing its detection and monitoring.
Abstract:
A system and method for managing optical power for controlling thermal alteration of a sample undergoing spectroscopic analysis is provided. The system includes a moveable laser beam generator for irradiating the sample and a beam shaping device for moving and shaping the laser beam to prevent thermal overload or build up in the sample. The moveable laser beam generator includes at least one beam shaping device selected from the group consisting of at least one optical lens, at least one optical diffractor, at least one optical path difference modulator, at least one moveable mirror, at least one Micro-Electro-Mechanical Systems (MEMS) integrated circuit (IC), and/or a liquid droplet. The system also includes an at least two degree of freedom (2 DOF) moveable substrate platform and a controller for controlling the laser beam generator and the substrate platform, and for analyzing light reflected from the sample.
Abstract:
A dispersive, diffraction grating, NIR spectrometer that automatically calibrates the wavelength scale of the instrument without the need for external wavelength calibration materials is shown. The device shows: 1) a low power He—Ne laser at right angles to the source beam of the spectrometer; 2) a folding mirror to redirect the collimated laser beam so that it is parallel to the source beam; 3) the tendency of diffraction gratings to produce overlapping spectra of higher orders; 4) a “polka dot” beam splitter to redirect the majority of the laser beam toward the reference detector; 5) PbS detectors and 6) a software routine written in Lab VIEW that automatically corrects the wavelength scale of the instrument from the positions of the 632.8 nm laser line in the spectrum.