Abstract:
A semiconductor wafer has integrated circuits formed thereon and a top passivation layer applied. The passivation layer is patterned and selectively etched to expose contact pads on each semiconductor die. The wafer is exposed to ionized gas causing the upper surface of passivation layer to roughen and to slightly roughen the upper surface of the contact pads. The wafer is cut to form a plurality of semiconductor dies each with a roughened passivation layer. The plurality of semiconductor dies are placed on an adhesive layer and a reconstituted wafer formed. Redistribution layers are formed to complete the semiconductor package having electrical contacts for establishing electrical connections external to the semiconductor package, after which the wafer is singulated to separate the dice.
Abstract:
A lens mount is attached to a circuit board and covers electrical components on the circuit board. An electrically insulating device is positioned between the lens mount and the circuit board. The circuit board includes a grounding pad adjacent the electrically insulating device. The lens mount includes an aperture aligned with the grounding pad and the electrically insulating device. A conductive glue is dispensed into the aperture to electrically ground the lens mount to the grounding pad. The electrically insulating device seals the conductive glue from the electrical components. A method of grounding a lens mount to a circuit board is provided.
Abstract:
A semiconductor package includes an RFID chip positioned between a first die and a second die attached to a support substrate. The RFID chip is free of electrical connections to the dice and the support substrate. The RFID chip is sized to correspond to an interposer board. Data pertaining to operating characteristics of the dice are stored to and read from the RFID chip during back-end processing to determine abnormalities and improve yield. Said data may be stored to a database corresponding to the RFID chip in the package. A method of making a semiconductor package having an RFID chip positioned between dice is provided. The package is traceable by customers via the data stored to the RFID chip and the database.
Abstract:
Methods and devices for packaging integrated circuits. A packaged device may include an integrated circuit, a first packaging component including a patterned surface, and a second packaging component. The patterned surface of the first packaging component may be adhesively coupled to a surface of the second packaging component or a surface of the integrated circuit. The integrated circuit may be at least partially enclosed between the first and second packaging components. A packaging method may include patterning a surface of a packaging component of an integrated circuit package. The surface of the packaging component may be for adhesively coupling to a second component to at least partially enclose an integrated circuit in the integrated circuit package.
Abstract:
An electronic device may include a bottom interconnect layer having a first electrically conductive via therein. The electronic device may also include an integrated circuit (IC) carried by said bottom interconnect layer, and an encapsulation material on the bottom interconnect layer and surrounding the IC. The encapsulation layer may have a second electrically conductive via therein aligned with the first electrically conductive via. The second electrically conductive via may have a cross-sectional area larger than a cross-sectional area of the first electrically conductive via.
Abstract:
A process for forming a metal interconnection in an integrated circuit includes forming a first metal layer and a second metal layer on the first metal layer. Photoresist is placed on the second metal layer and patterned to form a mask. The second metal layer is etched. The mask is then removed and the first metal layer is patterned with the second metal layer acting as mask for the first metal layer.
Abstract:
An integrated circuit is formed having an array of memory cells located in the dielectric stack above a semiconductor substrate. Each memory cell has two adjustable resistors and two heating elements. A dielectric material separates the heating elements from the adjustable resistors. One heating element alters the resistance of one of the resistors by applying heat thereto to write data to the memory cell. The other heating element alters the resistance of the other resistor by applying heat thereto to erase data from the memory cell.
Abstract:
A method comprises depositing an optical filter layer on a glass wafer, then cutting the wafer into dice. The dice are positioned on a carrier and encapsulated in a molding compound to form a reconstituted wafer, and the wafer is back-ground and polished. Lens faces are positioned on opposing surfaces of the glass dice and spacers are positioned on one side of the wafer. The wafer is then cut into lens modules, each having two side-by-side lenses with an opaque molding compound barrier between. The individual modules are attached to devices that require dual lenses, such as, e.g., proximity sensors that use a light source and a light receiver or detector.
Abstract:
A wafer handling station includes a housing defining a chamber, and a wafer cassette assembly positionable in the chamber. The wafer cassette assembly includes a vertical support, and cassette members carried by the vertical support in spaced relation. Each cassette member includes a base coupled to the vertical support, wafer contact pads on an upper surface of the base and configured to support a wafer thereon, and a pair of wafer brackets carried by the base and configured to engage respective edges of the wafer to laterally confine the wafer.
Abstract:
A silicon on insulater (SOI) wafer is provided. A dielectric layer is formed on an active silicon substrate of the wafer. The dielectric layer is patterned and etched to expose selected portions of the silicon substrate. Impurities are then introduced into the exposed portions of the silicon substrate to act as gettering regions. The dielectric layer is then removed and an epitaxial layer of silicon is grown on the silicon substrate. Trenches are etched in the epitaxial layer of silicon through the gettering regions, partially removing the gettering regions and any contaminants contained therein. Remaining portions of the gettering regions still act as gettering regions during subsequent process steps.