Abstract:
One embodiment of the present invention is a linear amplifier based on a field emission device that is driven at its input in current-mode. The ratio (gamma) of the separation distance between the anode and cathode (d.sub.ak) to the separation distance between the cathode and gate (d.sub.gk) is in the range of 20 to 200. The amplifier betas that result from these gammas range from a low of 30 to a high of 1000. The linear amplifier is combined with an active matrix to form a vacuum flat-panel display with good gray-scale performance.
Abstract:
A non-power generating current limiting device such as a field effect transistor is provided to output a regulated current in dependence upon a control voltage. An electron field emitter is connected to a drain or output of the non-power generating current limiting device to receive the regulated current. A tip of the electron field emitter emits electrons towards a collector anode. An extractor gate can be provided between the electron field emitter and the collector anode to control the rate of electron emission from the electron field emitter. Because the non-power generating current limiting device regulates the current to the electron field emitter, a maximum current output of the electron field emitter is limited to the regulated current from the voltage controlled current source. The electron field emitter is thus protected from destruction due to excess current. The non-power generating current limiting device can also be used to modulate electron emission from the field emitter.
Abstract:
Field emission device apparatus employing an integrally formed capacitance and a switch serially connected between a conductive element and a current source to provide substantially continuous emitted electron current during selected charging periods and non-charging periods.
Abstract:
An electron beam apparatus for applying an electron beam from an electron source onto a target plane is characterized by comprising one sheet of electrode disposed between said electron source for emitting the electron beam in parallel or substantially parallel and a target arrangement position, and a power source for supplying a desired voltage to said electrode.
Abstract:
A display device capable of exhibiting sufficient luminescence using FECs as a plane electron source. The display device includes a substrate section or a cathode substrate and a display substrate section or an anode substrate. The substrate section includes TFT sections and FEC sections each connected to one electrode of each of the TFT sections. The display substrate section includes three anodes arranged in a manner to be divided from each other. On each of the anodes is deposited a phosphor layer. Both substrate sections are arranged opposite to each other through a vacuum atmosphere.
Abstract:
An integrally controlled field emission device display employing planar field emission devices as controlling elements for non-planar field emission devices utilized for excitation of a cathodoluminescent layer is provided.
Abstract:
The invention relates to a high-voltage electrode with a plurality of individual electrodes arranged mutually in parallel, these electrodes being electrically connected in groups or all of them together and being characterized in that the high-voltage electrode exhibits an elongated, elastically deformable strip of an electrically insulating material; that the individual electrodes are arranged perpendicularly to the longitudinal extension of the strip and project past one of the longitudinal edges of the strip with their tips; and that an electric conductor is mounted in the longitudinal extension to at least one flat side of the strip.
Abstract:
A microscopic voltage controlled field emission electron amplifier device consists of a dense array of field emission cathodes with individual cathode impedances employed to modulate and control the field emission currents of the device. These impedances are selected to be sensitive to an external stimulus such as light, x-rays, infrared radiation or particle bombardment; so that the field emission current varies spacially in proportion to the intensity of the controlling stimulus. When a phosphorus screen or other suitable responsive element is provided, the device functions as a solid state image convertor or intensifier.
Abstract:
A flat television screen, comprising several electron-emitting devices, each essentially consisting of an electric power supply connected to two plates of a capacitor supplying by one of these plates at least one field emission and an extraction grid placed close to the top of the field emission, the grid itself being connected to the other plate of the capacitor by a variable voltage generating device, these devices being connected together facing a fluorescent screen placed to receive a flow of electrons emitted by the field emission of each of the devices.
Abstract:
The display device has an electrically conductive phosphorcoated transparent screen, a panel element disposed in close parallel relation to the screen with the panel having an array of electron emitting regions on a semiconductor plate, each controlled by an adjacent memory cell in the plate. An enclosure which includes the screen surrounds the panel. An electric potential is established between the screen and the panel, and a vacuum produced in the enclosure. Preferably, the memory cells associated with the electron emitting regions are storage elements of a shift register which extend throughout the entire array of electron emitters. A binary signal is introduced into the shift register which is used to establish a predetermined pattern of electron emitting regions on the semiconductor panel. This produces a display on the spaced transparent screen when the emitted electrons strike the phosphor on the screen.