DEPOSITION AND DENSIFICATION PROCESS FOR TITANIUM NITRIDE BARRIER LAYERS
    22.
    发明申请
    DEPOSITION AND DENSIFICATION PROCESS FOR TITANIUM NITRIDE BARRIER LAYERS 失效
    硝酸钡阻挡层的沉积和渗透过程

    公开(公告)号:US20080085611A1

    公开(公告)日:2008-04-10

    申请号:US11869557

    申请日:2007-10-09

    CPC classification number: H01L21/28556 H01L21/321 H01L21/76843 H01L21/76862

    Abstract: In one embodiment, a method for forming a titanium nitride barrier material on a substrate is provided which includes depositing a titanium nitride layer on the substrate by a metal-organic chemical vapor deposition (MOCVD) process, and thereafter, densifying the titanium nitride layer by exposing the substrate to a plasma process. In one example, the MOCVD process and the densifying plasma process is repeated to form a barrier stack by depositing a second titanium nitride layer on the first titanium nitride layer. In another example, a third titanium nitride layer is deposited on the second titanium nitride layer. Subsequently, the method provides depositing a conductive material on the substrate and exposing the substrate to a annealing process. In one example, each titanium nitride layer may have a thickness of about 15 Å and the titanium nitride barrier stack may have a copper diffusion potential of less than about 5×1010 atoms/cm2.

    Abstract translation: 在一个实施例中,提供了一种在衬底上形成氮化钛阻挡材料的方法,其包括通过金属 - 有机化学气相沉积(MOCVD)工艺在衬底上沉积氮化钛层,然后通过以下步骤致密化氮化钛层: 将衬底暴露于等离子体工艺。 在一个实例中,通过在第一氮化钛层上沉积第二氮化钛层来重复MOCVD工艺和致密等离子体工艺以形成势垒堆叠。 在另一示例中,在第二氮化钛层上沉积第三氮化钛层。 随后,该方法提供在衬底上沉积导电材料并将衬底暴露于退火过程。 在一个示例中,每个氮化钛层可以具有约的厚度,并且氮化钛阻挡层可以具有小于约5×10 10原子/ cm 2的铜扩散电位, SUP>。

    APPARATUS FOR VARIABLE SUBSTRATE TEMPERATURE CONTROL
    25.
    发明申请
    APPARATUS FOR VARIABLE SUBSTRATE TEMPERATURE CONTROL 有权
    可变基板温度控制装置

    公开(公告)号:US20130247826A1

    公开(公告)日:2013-09-26

    申请号:US13430278

    申请日:2012-03-26

    Abstract: In some embodiments, an apparatus for variable substrate temperature control may include a heater moveable along a central axis of a substrate support; a seal ring disposed about the heater, the seal ring configured to interface with a shadow ring disposed above the heater to form a seal; a plurality of spacer pins configured to support a substrate and disposed within a plurality of through holes formed in the heater, the plurality of spacer pins moveable parallel to the central axis, wherein the plurality of spacer pins control a first distance between the substrate and the heater and a second distance between the substrate and the shadow ring; and a resilient element disposed beneath the seal ring to bias the seal ring toward a backside surface of the heater.

    Abstract translation: 在一些实施例中,用于可变衬底温度控制的装置可以包括可沿衬底支撑件的中心轴线移动的加热器; 围绕所述加热器设置的密封环,所述密封环被配置为与设置在所述加热器上方的阴影环接合以形成密封; 多个间隔销,其构造成支撑基板并且设置在形成在所述加热器中的多个通孔内,所述多个间隔销可平行于所述中心轴线移动,其中所述多个间隔销控制所述基板和所述基板之间的第一距离 加热器和衬底和阴影环之间的第二距离; 以及弹性元件,其设置在所述密封环下方以将所述密封环朝向所述加热器的后侧表面偏置。

    METHODS FOR FORMING TUNGSTEN-CONTAINING LAYERS
    26.
    发明申请
    METHODS FOR FORMING TUNGSTEN-CONTAINING LAYERS 审中-公开
    形成含钨层的方法

    公开(公告)号:US20120003833A1

    公开(公告)日:2012-01-05

    申请号:US13172339

    申请日:2011-06-29

    CPC classification number: H01L21/28562 C23C16/06 C23C16/45525

    Abstract: Methods for forming tungsten-containing layers on substrates are provided herein. In some embodiments, a method for forming a tungsten-containing layer on a substrate disposed in a process chamber may include mixing hydrogen and a hydride to form a first process gas; introducing the first process gas to the process chamber; exposing the substrate in the process chamber to the first process gas for a first period of time to form a conditioned substrate surface; subsequently purging the process chamber of the first process gas; exposing the substrate to a second process gas comprising a tungsten precursor for a second period of time to form a tungsten-containing nucleation layer atop the conditioned substrate surface; and subsequently purging the process chamber of the second process gas.

    Abstract translation: 本文提供了在基片上形成含钨层的方法。 在一些实施例中,在设置在处理室中的衬底上形成含钨层的方法可以包括混合氢气和氢化物以形成第一工艺气体; 将第一工艺气体引入处理室; 将处理室中的衬底暴露于第一工艺气体第一时间段以形成经调理的衬底表面; 随后清洗第一工艺气体的处理室; 将衬底暴露于包含钨前体的第二工艺气体持续第二时间段以在经调理的衬底表面上方形成含钨成核层; 随后清洗第二工艺气体的处理室。

    ATOMIC LAYER DEPOSITION OF TUNGSTEN MATERIALS
    27.
    发明申请
    ATOMIC LAYER DEPOSITION OF TUNGSTEN MATERIALS 有权
    原子层沉积材料

    公开(公告)号:US20110244682A1

    公开(公告)日:2011-10-06

    申请号:US13160378

    申请日:2011-06-14

    Abstract: Embodiments of the invention provide a method for depositing tungsten-containing materials. In one embodiment, a method includes forming a tungsten nucleation layer over an underlayer disposed on the substrate while sequentially providing a tungsten precursor and a reducing gas into a process chamber during an atomic layer deposition (ALD) process and depositing a tungsten bulk layer over the tungsten nucleation layer, wherein the reducing gas contains hydrogen gas and a hydride compound (e.g., diborane) and has a hydrogen/hydride flow rate ratio of about 500:1 or greater. In some examples, the method includes flowing the hydrogen gas into the process chamber at a flow rate within a range from about 1 slm to about 20 slm and flowing a mixture of the hydride compound and a carrier gas into the process chamber at a flow rate within a range from about 50 sccm to about 500 sccm.

    Abstract translation: 本发明的实施方案提供了一种沉积含钨材料的方法。 在一个实施例中,一种方法包括在设置在衬底上的底层上形成钨成核层,同时在原子层沉积(ALD)工艺期间依次提供钨前体和还原气体到处理室中,并在其上沉积钨体积层 钨成核层,其中所述还原气体包含氢气和氢化物化合物(例如乙硼烷),并且具有约500:1或更高的氢/氢化物流速比。 在一些实例中,该方法包括以约1slm至约20slm的流速将氢气流入处理室,并将氢化物化合物和载气的混合物以流速流动到处理室中 在约50sccm至约500sccm的范围内。

    METHOD OF DEPOSITING TUNGSTEN FILM WITH REDUCED RESISTIVITY AND IMPROVED SURFACE MORPHOLOGY
    28.
    发明申请
    METHOD OF DEPOSITING TUNGSTEN FILM WITH REDUCED RESISTIVITY AND IMPROVED SURFACE MORPHOLOGY 失效
    具有降低电阻率和改进表面形态的沉积薄膜的方法

    公开(公告)号:US20100167527A1

    公开(公告)日:2010-07-01

    申请号:US12637864

    申请日:2009-12-15

    Abstract: A method of controlling the resistivity and morphology of a tungsten film is provided, comprising depositing a first film of a bulk tungsten layer on a substrate during a first deposition stage by (i) introducing a continuous flow of a reducing gas and a pulsed flow of a tungsten-containing compound to a process chamber to deposit tungsten on a surface of the substrate, (ii) flowing the reducing gas without flowing the tungsten-containing compound into the chamber to purge the chamber, and repeating steps (i) through (ii) until the first film fills vias in the substrate surface, increasing the pressure in the process chamber, and during a second deposition stage after the first deposition stage, depositing a second film of the bulk tungsten layer by providing a flow of reducing gas and tungsten-containing compound to the process chamber until a second desired thickness is deposited.

    Abstract translation: 提供了一种控制钨膜的电阻率和形态的方法,包括:在第一沉积阶段,通过(i)引入连续流动的还原气体和脉冲流 将含钨化合物加入到处理室中,以沉积在基材表面上的钨,(ii)使还原气体流动,而不使含钨化合物流入室中以吹扫室,并重复步骤(i)至(ii) ),直到第一膜填充衬底表面中的通孔,增加处理室中的压力,并且在第一沉积阶段之后的第二沉积阶段期间,通过提供还原气体和钨的流动沉积体钨层的第二膜 包含化合物到处理室,直到沉积第二期望厚度。

    Vapor deposition of tungsten materials
    29.
    发明授权
    Vapor deposition of tungsten materials 失效
    钨材料的蒸气沉积

    公开(公告)号:US07732327B2

    公开(公告)日:2010-06-08

    申请号:US12239046

    申请日:2008-09-26

    Abstract: Embodiments of the invention provide an improved process for depositing tungsten-containing materials. The process utilizes soak processes and vapor deposition processes to provide tungsten films having significantly improved surface uniformity while increasing the production level throughput. In one embodiment, a method is provided which includes depositing a tungsten silicide layer on the substrate by exposing the substrate to a continuous flow of a silicon precursor while also exposing the substrate to intermittent pulses of a tungsten precursor. The method further provides that the substrate is exposed to the silicon and tungsten precursors which have a silicon/tungsten precursor flow rate ratio of greater than 1, for example, about 2, about 3, or greater. Subsequently, the method provides depositing a tungsten nitride layer on the tungsten suicide layer, depositing a tungsten nucleation layer on the tungsten nitride layer, and depositing a tungsten bulk layer on the tungsten nucleation layer.

    Abstract translation: 本发明的实施方案提供了一种用于沉积含钨材料的改进方法。 该方法利用浸泡方法和气相沉积方法提供具有显着改善的表面均匀性的钨膜,同时提高生产水平的生产量。 在一个实施例中,提供了一种方法,其包括通过将衬底暴露于硅前体的连续流中而在衬底上沉积钨硅化物层,同时将衬底暴露于钨前体的间歇脉冲。 该方法还提供了将硅衬底暴露于硅/钨前体流速比大于1,例如约2,约3或更大的硅和钨前体。 随后,该方法提供在硅化钨层上沉积氮化钨层,在钨氮化物层上沉积钨成核层,并在钨成核层上沉积钨体层。

    DEPOSITION AND DENSIFICATION PROCESS FOR TITANIUM NITRIDE BARRIER LAYERS
    30.
    发明申请
    DEPOSITION AND DENSIFICATION PROCESS FOR TITANIUM NITRIDE BARRIER LAYERS 失效
    硝酸钡阻挡层的沉积和渗透过程

    公开(公告)号:US20090280640A1

    公开(公告)日:2009-11-12

    申请号:US12426815

    申请日:2009-04-20

    CPC classification number: H01L21/28556 H01L21/321 H01L21/76843 H01L21/76862

    Abstract: In one embodiment, a method for forming a titanium nitride barrier material on a substrate is provided which includes depositing a titanium nitride layer on the substrate by a metal-organic chemical vapor deposition (MOCVD) process, and thereafter, densifying the titanium nitride layer by exposing the substrate to a plasma process. In one example, the MOCVD process and the densifying plasma process is repeated to form a barrier stack by depositing a second titanium nitride layer on the first titanium nitride layer. In another example, a third titanium nitride layer is deposited on the second titanium nitride layer. Subsequently, the method provides depositing a conductive material on the substrate and exposing the substrate to a annealing process. In one example, each titanium nitride layer may have a thickness of about 15 Å and the titanium nitride barrier stack may have a copper diffusion potential of less than about 5×1010 atoms/cm2.

    Abstract translation: 在一个实施例中,提供了一种在衬底上形成氮化钛阻挡材料的方法,其包括通过金属 - 有机化学气相沉积(MOCVD)工艺在衬底上沉积氮化钛层,然后通过以下步骤致密化氮化钛层: 将衬底暴露于等离子体工艺。 在一个实例中,通过在第一氮化钛层上沉积第二氮化钛层来重复MOCVD工艺和致密等离子体工艺以形成势垒堆叠。 在另一示例中,在第二氮化钛层上沉积第三氮化钛层。 随后,该方法提供在衬底上沉积导电材料并将衬底暴露于退火过程。 在一个示例中,每个氮化钛层可以具有约15埃的厚度,并且氮化钛阻挡层可以具有小于约5×10 10原子/ cm 2的铜扩散电位。

Patent Agency Ranking