Abstract:
An engine control system and method includes sensing the quality of fuel in the engine relative to emissions, by for example sensing the level of an emission related constituent, such as sulfur. A fuel quality sensor detects a fuel quality of a fuel, such as the sulfur level the fuel, and provides a signal in response to the fuel quality. The engine control system also includes a navigation device to determine whether an engine is located in a regulated or non-regulated region. The engine control system receives the signal and controls engine operation by, for example, enabling or disabling one or more engine algorithms to improve performance of the engine based on the fuel quality signal or, in other embodiments, the combination of the fuel quality and the location of the engine.
Abstract:
A fuel injector is provided that includes various precise configuration parameters, including dimensions, shape and/or relative positioning of fuel injector features, resulting in improved efficiency of fuel flow through the fuel injector.
Abstract:
An engine control system and method includes sensing the quality of fuel in the engine relative to emissions, by for example sensing the level of an emission related constituent, such as sulfur. A fuel quality sensor detects a fuel quality of a fuel, such as the sulfur level the fuel, and provides a signal in response to the fuel quality. The engine control system also includes a navigation device to determine whether an engine is located in a regulated or non-regulated region. The engine control system receives the signal and controls engine operation by, for example, enabling or disabling one or more engine algorithms to improve performance of the engine based on the fuel quality signal or, in other embodiments, the combination of the fuel quality and the location of the engine.
Abstract:
A charge air cooler assembly for an internal combustion engine is described. A housing of the charge air cooler assembly includes a dividing wall that separates flow after the charge air cooler into two separate flow paths.
Abstract:
This disclosure relates to an improved prechamber device for an internal combustion engine. The prechamber device is positioned adjacent to a combustion chamber. The improved prechamber device is configured to improve removal of heat from the prechamber device, particularly in the area adjacent to the combustion chamber.
Abstract:
A velocity profile can be used in conjunction with vehicle operating condition data to determine a gear shift schedule that mitigates the amount of service brake effort required to slow a vehicle by making optimal use of engine speed, friction and engine brakes. The gear shift point drives the engine to a higher operating speed and greater frictional torque, slowing the vehicle, which can then coast to a desired speed. The gear shift point can be timed to minimize fuel consumption during the maneuver. Thus, a vehicle downshift event is created based on the transmission gear recommendation. The benefit is increased freight efficiency in transporting cargo from source to destination by minimizing fuel consumption and maintaining drivability.
Abstract:
This disclosure relates to a waste heat recovery (WHR) system and method for regulating exhaust gas recirculation (EGR) cooling, and more particularly, to a Rankine cycle WHR system and method, including a recuperator bypass arrangement to regulate EGR exhaust gas cooling for engine efficiency improvement and thermal management. This disclosure describes other unique bypass arrangements for increased flexibility in the ability to regulate EGR exhaust gas cooling.
Abstract:
An engine control system and method includes sensing the quality of fuel in the engine relative to emissions, by for example sensing the level of an emission related constituent, such as sulfur. A fuel quality sensor detects a fuel quality of a fuel, such as the sulfur level in the fuel, and provides a signal in response to the fuel quality. The engine control system also includes a navigation device to determine whether an engine is located in a regulated or non-regulated region. The engine control system receives the signal and controls engine operation by, for example, enabling or disabling one or more engine algorithms to improve performance of the engine based on the fuel quality signal or, in other embodiments, the combination of the fuel quality and the location of the engine.
Abstract:
This disclosure provides system and method that can determine hydraulic start of injection (SOI) in engines using an in-cylinder pressure sensor. The system and method determine apparent heat release rate (AHRR) curve data for the cylinder from the pressure information provided by the in-cylinder pressure sensors, and the hydraulic SOI from the derivative of the AHRR curve data. The system and method provide diagnostic, control and/or compensation opportunities for fuel injector operation in high pressure fuel rail engine systems without use of expensive or complex fuel injector components.
Abstract:
According to one embodiment, described herein is an apparatus for decomposing diesel exhaust fluid into ammonia for an internal combustion engine (ICE) system having a selective catalytic reduction system. The apparatus includes an outlet cover, an inlet cover coupled to the outlet cover, and a support plate disposed between the outlet cover and the inlet cover. The support plate forms an outlet channel with the outlet cover and an inlet channel with the inlet cover. The inlet channel is fluidly coupled to the outlet channel. Additionally, the inlet channel may be adjacent to the outlet channel.