Abstract:
A reinforced semiconductor package (500, 700) with a stiffener (400, 600) is provided. The stiffener is composed of an inner ring (410) disposed on the upper surface (512) of a substrate (510) and surrounding a semiconductor chip (520), and an outer ring (420) also disposed on the upper surface of the substrate but surrounding the inner ring. The inner ring and the outer ring are connected with each other by means of at least one tie bar (430), and cooperatively cover a majority portion of the upper surface of the substrate. Accordingly, the strength and rigidity of the substrate of the present semiconductor package can be reinforced to efficiently prevent warpage thereof.
Abstract:
A method includes forming an opening extending from a back surface of a semiconductor substrate to a metal pad on a front side of the semiconductor substrate, and forming a first conductive layer including a first portion overlapping active image sensors in the semiconductor substrate, a second portion overlapping black reference image sensors in the semiconductor substrate, and a third portion in the opening to contact the metal pad. A second conductive layer is formed over and contacting the first conductive layer. A first patterning step is performed to remove the first and the second portions of the second conductive layer, wherein the first conductive layer is used as an etch stop layer. A second patterning step is performed to remove a portion of the first portion of the first conductive layer. The second and the third portions of the first conductive layer remain after the second patterning step.
Abstract:
A backside illuminated image sensor is provided which includes a substrate having a front side and a backside, a sensor formed in the substrate at the front side, the sensor including at least a photodiode, and a depletion region formed in the substrate at the backside, a depth of the depletion region is less than 20% of a thickness of the substrate.
Abstract:
The present disclosure provides methods and apparatus for reducing dark current in a backside illuminated semiconductor device. In one embodiment, a method of fabricating a semiconductor device includes providing a substrate having a frontside surface and a backside surface, and forming a plurality of sensor elements in the substrate, each of the plurality of sensor elements configured to receive light directed towards the backside surface. The method further includes forming a dielectric layer on the backside surface of the substrate, wherein the dielectric layer is formed to have a compressive stress to induce a tensile stress in the substrate. A backside illuminated semiconductor device fabricated by such a method is also disclosed.
Abstract:
Provided is a method of fabricating a semiconductor device that includes providing a semiconductor substrate having a front side and a back side, forming a first circuit and a second circuit at the front side of the semiconductor substrate, bonding the front side of the semiconductor substrate to a carrier substrate, thinning the semiconductor substrate from the back side, and forming an trench from the back side to the front side of the semiconductor substrate to isolate the first circuit from the second circuit.
Abstract:
Methods are disclosed herein for determining the laser beam size and the scan pattern of laser annealing when fabricating backside illumination (BSI) CMOS image sensors to keep dark-mode stripe patterns corresponding to laser scan boundary effects from occurring within the sensor array regions of the image sensors. Each CMOS image sensor has a sensor array region and a periphery circuit. The methods determines a size of the laser beam from a length of the sensor array region and a length of the periphery circuit so that the laser beam covers an integer number of the sensor array region for at least one alignment of the laser beam on the array of BSI image sensors. The methods further determines a scan pattern so that the boundary of the laser beam does not overlap the sensor array regions during the laser annealing, but only overlaps the periphery circuits.
Abstract:
Provided is a method of fabricating a semiconductor device that includes providing a semiconductor substrate having a front side and a back side, forming a first circuit and a second circuit at the front side of the semiconductor substrate, bonding the front side of the semiconductor substrate to a carrier substrate, thinning the semiconductor substrate from the back side, and forming an trench from the back side to the front side of the semiconductor substrate to isolate the first circuit from the second circuit.
Abstract:
The present disclosure provides methods and apparatus for reducing dark current in a backside illuminated semiconductor device. In one embodiment, a method of fabricating a semiconductor device includes providing a substrate having a frontside surface and a backside surface, and forming a plurality of sensor elements in the substrate, each of the plurality of sensor elements configured to receive light directed towards the backside surface. The method further includes forming a dielectric layer on the backside surface of the substrate, wherein the dielectric layer has a compressive stress to induce a tensile stress in the substrate. A backside illuminated semiconductor device fabricated by such a method is also disclosed.
Abstract:
Provided is a method for fabricating an image sensor device that includes providing a substrate having a front side and a back side; patterning a photoresist on the front side of the substrate to define an opening having a first width, the photoresist having a first thickness correlated to the first width; performing an implantation process through the opening using an implantation energy correlated to the first thickness thereby forming a first doped isolation feature; forming a light sensing feature adjacent to the first doped isolation feature, the light sensing feature having a second width; and thinning the substrate from the back side so that the substrate has a second thickness that does not exceed twice a depth of the first doped isolation feature. A pixel size is substantially equal to the first and second widths.
Abstract:
A backside-illuminated sensor including a semiconductor substrate. The semiconductor substrate has a front surface and a back surface. A plurality of pixels are formed on the front surface of the semiconductor substrate. At least one pixel includes a photogate structure. The photogate structure has a metal gate that includes a reflective layer.