Abstract:
An electrical contact area on a printed circuit board (“PCB”), that would otherwise be subject to abrasion and possibly also corrosion, can be protected by covering it with another, more durable contact structure that is bonded to the first-mentioned contact area using an anistropic conductive adhesive (“ACA”). The more durable contact structure may include a member of PCB material or the like with electrically connected electrical contacts on its upper and lower surfaces. At least the upper one of these contacts (which is exposed for the service that involves possible abrasion and/or corrosion) may be given high durability by plating it with hard gold. The lower of these contacts is adhered to the main PCB via the above-mentioned ACA.
Abstract:
A resistive force sensor with capacitive discrimination is disclosed. According to an example of the disclosure, a sensor is directed to detect resistance and capacitance in an alternating fashion, the resistance indicating a force being applied to an input area of a device, and the capacitance indicating a proximity of a body part to the input area of the device, and the detected resistance and capacitance are utilized to determine whether the body part has pressed the input area of the device.
Abstract:
A resistive force sensor with capacitive discrimination is disclosed. According to an example of the disclosure, a sensor is directed to detect resistance and capacitance in an alternating fashion, the resistance indicating a force being applied to an input area of a device, and the capacitance indicating a proximity of a body part to the input area of the device, and the detected resistance and capacitance are utilized to determine whether the body part has pressed the input area of the device.
Abstract:
Various embodiments of removable user interfaces, electronic computing devices, and systems are described. In one embodiment, an apparatus includes a body having a bend and a user interface area, a connector adapted to couple to a corresponding connector on an electronic device, and a plurality of conductive elements. The bend enables the user interface area to wrap around a portion of the electronic device when the connector is coupled to the corresponding connector on the electronic device. In another embodiment, a portable electronic system includes a removable user interface and an electronic computing device having a display surface, where the removable user interface is couplable to the electronic computing device such that the removable user interface is disposed over at least a part of the display surface.
Abstract:
This is directed to systems and methods for providing inputs to an electronic device with a button assembly. The button assembly may include a center region, a first end region that may extend from a first side of the center region, and a second end region that may extend from a second side of the center region. Each one of the first end region and the second end region may include a first flexibility, and the center region may include a second flexibility that may be less than the first flexibility.
Abstract:
A memory unit for a computing device is described. The memory device can include a number of memory chips, such as flash nand chips, linked together via a flexible circuit connector. During installation of the memory device, portions of the flexible circuit connector can be bent or folded in different locations to allow an orientation of the memory chips to be changed relative to one another. In one embodiment, a memory device with a number of chips can be provided in a flat configuration and then can be folded to allow the chips to be installed in a stacked configuration. In another embodiment, the flexible circuit connector can be grounded to other conductive components to allow the flexible circuit connector to be used as part of a faraday cage surrounding the memory chips.
Abstract:
Management or coordination of playback of digital media assets by an electronic device (e.g., a computing device), that supports media playback is disclosed. According to one embodiment, the electronic device can be controlled such that a user is able to schedule playback of distinct digital media assets.
Abstract:
Methods and apparatus for provide physical buttons for use on a touch surface are disclosed. According to one aspect of the present invention, an apparatus includes a display arrangement and a first button attachment structure. The display arrangement includes a first surface which has a first touch-sensitive area. The first touch-sensitive area is capable of sensing touch. The first button attachment structure includes a first attachment area and a first button actuation area. The first attachment area is mounted on the first surface such that the first button actuation is aligned at least partially over the first touch-sensitive area. The first button actuation area is arranged to deform when a force is applied to the first button actuation area to engage the first touch-sensitive area.
Abstract:
The disclosed embodiments relate to techniques for facilitating thermal transfer in a portable electronic device. This portable electronic device may include a battery pack, which includes a battery cell and enclosure material for enclosing the battery cell. This enclosure material extends beyond the enclosure for the battery cell to facilitate thermal transfer within the portable electronic device.
Abstract:
Techniques are provided for removing thermal gradients from an organic light emitting diode (OLED) display. In one embodiment, an OLED display device includes a thermally conductive layer placed between electronic components housed within the device and the OLED display. Heat given off by the electronic components is transferred from warm to cold regions of the thermally conductive layer to create a more uniform ambient temperature across the back of the OLED display. Some embodiments indicate a position of the thermally conductive layer within layers of an OLED display stack (e.g., between a glass substrate and polyimide layer). Some embodiments include a specific range of thermal conductivities and/or thicknesses desired for the thermally conductive layer.