Abstract:
A method of making an integrated circuit package includes forming a through hole in an integrated circuit and assembling a die containing the integrated circuit on a carrier so that the die is mechanically and electrically connected to the carrier. Thereafter, an underfill material is dispensed between the die and the carrier via the through hole.
Abstract:
An apparatus for testing electrical continuity of a surface mounted (SMT) electrical board includes: a printed wiring board having a first surface and an opposite second surface; a conductive signal line disposed on each of the first and second surfaces of the printed wiring board; an electrical component disposed on and electrically connected to the conductive signal line on the first surface; and a through hole extending through the printed wiring board and the conductive signal line on the second surface of the printed wiring board exposing a surface side of the conductive signal line facing the first surface of the printed wiring board. The through hole is unplated in an inside bore defining the through hole and the through hole allows direct access to the conductive signal line on the first surface to test continuity of the conductive signal line on the first surface connected to the electrical component from the second surface of the printed wiring board.
Abstract:
A double-data-rate two synchronous dynamic random access (DDR2 ) memory circuit includes a low-speed input path and a high-speed input path coupled thereto by an input coupling and forming a common input, the common input coupled to a memory core, the memory core having a common output wherein a high-speed output path and a low-speed output path are coupled together by an output coupling and further coupled to the common output of the memory core.
Abstract:
System and method for designing an electronic package. A placement manager receives a physical design of an electronic package from a packaging design tool. The placement manager receives design constraints regarding the physical design for the electronic package. The placement manager inserts specifications for at least one de-gassing opening in the physical design for the electronic package, wherein the specification for at least one de-gassing opening are created in accordance with said design constraints regarding said physical design of said electronic package. The placement manager outputs an updated physical design of the electronic package.
Abstract:
An integrated circuit assembly comprising a microchip that shares an interdependent function with a second, stacked microchip. Alternation of the physical arrangement or functionality of the microchips may initiate a defense action intended to protect security sensitive circuitry associated with one of the microchips. The microchips may communicate using through-silicon vias or other interconnects.
Abstract:
An integrated circuit assembly and associated method of detecting microchip tampering may include multiple connections in electrical communication with a conductive layer. Defensive circuitry may inhibit analysis of the microchip where a connection no longer connects to the conductive layer. The defensive circuitry may similarly be initiated where a connection unintended to be in electrical communication with the conductive layer is nonetheless connected.
Abstract:
A method and apparatus include conductive material doped within a microchip that accumulates a detectable charge in the presence of ions. Such ions may result from a focused ion beam or other unwelcome technology exploitation effort. Circuitry sensing the charge buildup in the embedded, doped material may initiate a defensive action intended to defeat the tampering operation.
Abstract:
A method for thermal optimization comprising the steps of stacking a first chip layer and a second chip layer wherein the second chip layer is rotated in relation to the first chip layer wherein a first hot spot on the first chip layer and a second hot spot on the second chip layer are not spatially aligned; routing a signal input through the first chip layer from a first chip pad on the first chip layer to a first silicon via so as to form a physical input to output twist and a first signal output; and routing the first signal output from the first chip layer through a second chip layer from a second chip pad on the second chip layer to a second silicon via so as to form a second signal output.
Abstract:
A data communications apparatus includes a central device and a plurality of communication devices. The central device includes a plurality of central port pairs, in which each central port pair includes an input port and an output port. The plurality of communication devices is arranged in a spoke and ring configuration, in which each communication device is part of a communication spoke. Each communication spoke is in communication with a different central port pair. Each communication device is also a part of a communication ring, so that each communication device in a selected communication ring belongs to a different communication spoke.
Abstract:
Connection assignments of differential signals within an integrated circuit (IC) package are automatically made in the design and manufacturing process of the IC package, for use in automated computing systems. Either predefined pairs of pins at both ends or pairs of pins automatically paired or a combination of both are used in the creation of an imaginary pin or midpoint between the pair. Then the point-to-point connections of the pair are automatically detangled. Once the imaginary midpoint-to-midpoint connections are created, the real differential connections can then be assigned.