Abstract:
An aerodynamic body operable to both promote laminar flow and satisfy structural requirements is disclosed. A perforated panel skin comprises an inner surface and an outer surface of the aerodynamic body. At least one hollow member is coupled to the inner surface and is operable to suction air from the outer surface and through the perforated panel skin. The at least one hollow member is oriented in a substantially chord-wise direction relative to an airflow over the aerodynamic body.
Abstract:
A testing apparatus for characterizing a tension strength of a fillet bond of a test specimen may include a lower fixture and an upper fixture. The test specimen may include a skin component bonded to a stiffener component. The lower fixture may maintain the stiffener component in a fixed position. The upper fixture may engage the skin component at a pair of discrete engagement locations on opposite sides of the fillet bond. The upper fixture may be mechanically coupled to a gimbal joint and may substantially isolate the filet bond from asymmetric bending during application of a tension test load to the fillet bond.
Abstract:
A hybrid contoured load-spreading washer is disclosed. An illustrative embodiment of the washer includes a washer body having a composite layer and a metal layer bonded to the composite layer and a fastener opening extending through the washer body. A floor beam seat track attachment assembly and a method of transmitting a load from a seat track to a floor beam web in a seat track attachment assembly are also disclosed.
Abstract:
An aerodynamic body operable to both promote laminar flow and satisfy structural requirements is disclosed. A perforated panel skin comprises an inner surface and an outer surface of the aerodynamic body. At least one hollow member is coupled to the inner surface and is operable to suction air from the outer surface and through the perforated panel skin. The at least one hollow member is oriented in a substantially chord-wise direction relative to an airflow over the aerodynamic body.
Abstract:
An apparatus and method for forming a stringer are provided. The stringer generally includes a web having a desired corrugated configuration and first and second flanges welded to opposite edges of the web. The apparatus includes a support structure, a strongback that is supported by the support structure, and a plurality of dies that are adjustable relative to the strongback. The strongback defines a corrugated contour surface corresponding to the desired corrugated configuration of the web. The dies define corresponding forming surfaces and are configured to be advanced toward the strongback to thereby form the web to the desired corrugated configuration between the contour surface of the strongback and the forming surfaces of the dies. Further, the apparatus can receive the flanges of the stringer in a predetermined configuration with the web so that the flanges can be welded to the web while the web is supported by the strongback and dies in the desired corrugated configuration.
Abstract:
An energy absorbing structural strut employs a composite tube bonded to an end fitting with the bond being slightly lower in strength than the crushing strength of the tube in axial compression. The end fitting incorporates an anvil to rupture the tube and absorb energy upon shearing of the bond with the strut in compression.
Abstract:
A die for use in an induction heating workcell incorporates segments of the induction coil in spaced array within a cast ceramic or phenolic body. A peripheral compression frame, typically of phenolic, surrounds the die body and applies a compressive load to the body through lateral and transverse reinforcing rods that are cast into the body. Matched dies close to trap heat in a workpiece at the center of the induction coil.
Abstract:
A method and apparatus for forming and consolidating organic matrix composites. An organic matrix composite panel comprising laid-up prepregs is placed between sheets of a susceptor material that is susceptible to inductive heating to form a workpiece. The resulting workpiece is placed within upper and lower dies formed of a material that is not susceptible to inductive heating. An induction coil embedded within the dies is energized and inductively heats the susceptor sheets surrounding the panel. The sheets in turn conductively heat the organic matrix composite panel. A pressure zone between the workpiece and one of the dies is pressurized to form the workpiece to the contour of a forming surface on one of the dies. The pressure in the pressure zone is maintained on the workpiece until the organic matrix composite panel is fully consolidated and formed.
Abstract:
The invention relates to a mounting device in an aircraft. In one aspect of the invention, a method is disclosed for assembling a metal securement member of the mounting device. In another aspect of the invention, a mounting device is disclosed. In another aspect of the invention, a method is disclosed for installing and using a mounting device in an aircraft.
Abstract:
The invention relates to a method of bonding two members together utilizing a stack of solid film adhesive and a layer of solid film adhesive, both disposed between the members. A pressure-applying device may be utilized to apply low pressure to force the members together. The pressure may force the stack to compress and expand in varying directions in order to substantially remove air-bubbles between the layer and one of the members. A heating device may be utilized to change the layer and the stack into liquid states in order to bond the members together with a void-free bond-line.