Abstract:
A mask read-only memory (ROM) includes a dielectric layer formed on a substrate and a plurality of first conductive lines formed on the dielectric layer. A plurality of diodes are formed in the first conductive lines, and a plurality of final vias are formed for a first set of the diodes each representing a first type of memory cell, with no final via being formed for a second set of diodes each representing a second type of memory cell. Each of a plurality of second conductive lines is formed over a column of the diodes.
Abstract:
According to a nonvolatile memory device having a multi gate structure and a method for forming the same of the present invention, a gate electrode is formed using a damascene process. Therefore, a charge storage layer, a tunneling insulating layer, a blocking insulating layer and a gate electrode layer are not attacked from etching in a process for forming the gate electrode, thereby forming a nonvolatile memory device having good reliability.
Abstract:
Disclosed herein are conjugates comprising a nanocarrier, a therapeutic agent or imaging agent and a targeting agent. Also disclosed herein are compositions comprising such conjugates and methods for using the conjugates to deliver therapeutic and/or imaging agents to cells. Also disclosed are methods for using the conjugates to treat particular disorders, such as proliferative disorders.
Abstract:
According to a nonvolatile memory device having a multi gate structure and a method for forming the same of the present invention, a gate electrode is formed using a damascene process. Therefore, a charge storage layer, a tunneling insulating layer, a blocking insulating layer and a gate electrode layer are not attacked from etching in a process for forming the gate electrode, thereby forming a nonvolatile memory device having good reliability.
Abstract:
In a non-volatile semiconductor memory device and a fabrication method thereof, a charge storage layer is formed on a substrate. A control gate layer is formed on the charge storage layer. A gate mask having a spacer-shape is formed on the control gate layer. The charge storage layer and the control gate layer are removed using the gate mask as protection to form a control gate and a charge storage region.
Abstract:
A method for performing an erase operation in a memory cell. A first voltage and a second voltage are applied to the source and drain regions, respectively, for a predetermined erase time; and the first and second voltages are switched with each other between the source and drain regions at least one time for the erase time. Thereby, hole is easily injected to the source and drain regions and a channel lateral surface, and a uniform and high-speed erase operation is archived.
Abstract:
A method of manufacturing a side glass for a vacuum fluorescent display is provided wherein a glass is cut to a predetermined length in accordance with the size of the vacuum fluorescent display. The glass is then bent to coincide two ends of the glass in accordance with the shape of the vacuum fluorescent display, and the two ends of the glass are adhered to one another. A sealing frit is applied on the upper side of the glass, and is plasticized and cured.
Abstract:
Provided are a resistive memory device and an operating method for the resistive memory device. The operating method includes detecting a write cycle, determining whether or not to perform a recovery operation by comparing the detected write cycle with a first reference value, and upon determining to perform the recovery operation, performing the recovery operation on target memory cells of the memory cell array.
Abstract:
A memory device includes a memory cell array having multiple memory cells arranged respectively in regions where first signal lines cross second signal lines. The memory device further includes a decoder having multiple line selection switch units connected respectively to the of first signal lines. Each of the multiple line selection switch units applies a bias voltage to a first signal line corresponding to each of the multiple line selection switch units in response selectively to a first switching signal and a second switching signal, voltage levels of which are different from each other in activated states.
Abstract:
A memory device includes a memory cell array having multiple memory cells arranged respectively in regions where first signal lines cross second signal lines. The memory device further includes a decoder having multiple line selection switch units connected respectively to the of first signal lines. Each of the multiple line selection switch units applies a bias voltage to a first signal line corresponding to each of the multiple line selection switch units in response selectively to a first switching signal and a second switching signal, voltage levels of which are different from each other in activated states.