摘要:
A fin field effect transistor has a fin pattern protruding from a semiconductor substrate. The fin pattern includes first semiconductor patterns and second semiconductor patterns which are stacked. The first and second semiconductor patterns have lattice widths that are greater than a lattice width of the substrate in at least one direction. In addition, the first and second semiconductor patterns may be alternately stacked to increase the height of the fin pattern, such that one of the first and second patterns can reduce stress from the other of the first and second patterns. The first and second semiconductor patterns may be formed of strained silicon and silicon-germanium, where the silicon-germanium patterns can reduce stress from the strained silicon patterns. Therefore, both the number of carriers and the mobility of carriers in the transistor channel may be increased, improving performance of the fin field effect transistor. Related methods are also discussed.
摘要:
Semiconductor device test patterns are provided that include a word line on a semiconductor substrate and an active region having a first impurity doped region and a second impurity doped region in at the semiconductor substrate. A first self-aligned contact pad is electrically connected to the first impurity doped region, and a first direct contact is electrically connected to the first self-aligned contact pad. A first bit line is electrically connected to the first direct contact, and a first probing pad is electrically connected to the first bit line. The test pattern further includes a second self-aligned contact pad that is electrically connected to the second impurity doped region, and a second direct contact electrically connected to the second self-aligned contact pad. A second conductive line is electrically connected to the second direct contact, and a second probing pad is electrically connected to the second conductive line. These test patterns may be used to measure leakage current in a cell transistor of the semiconductor device.
摘要:
A method of making a MOS transistor is disclosed. The disclosed techniques can completely transform a polysilicon gate electrode into a metal silicide electrode through a brief thermal treatment process by extending the contact area between the polysilicide gate electrode and a metal layer prior to a formation of a metal silicide. The disclosed MOS transistor fabricating method comprises providing a semiconductor substrate further comprising a polysilicon gate electrode with a silicide layer thereon, a spacer, and source and drain regions with LDD regions; forming an insulating layer on the area of the substrate; polishing the insulating layer so that the top of the polysilicon gate electrode can be exposed; etching some part of the insulating layer and the spacer so that both lateral walls of the polysilicon gate electrode can be exposed; forming a metal layer on the substrate resulted from the preceding step so that the polysilicon gate electrode can be covered with the metal layer; and transforming completely the polysilicon gate electrode into a metal silicide gate electrode by performing a thermal treatment process.
摘要:
Forming a semiconductor device can include forming an insulating layer on a semiconductor substrate including a conductive region thereof, wherein the insulating layer has a contact hole therein exposing a portion of the conductive region. A polysilicon contact plug can be formed in the contact hole wherein at least a portion of the polysilicon contact plug is doped with an element having a diffusion coeffient that is less than a diffusion coefficient of phosphorus (P). Related structures are also discussed.
摘要:
Methods of fabricating semiconductor devices are provided. A substrate having active patterns and isolating layer patterns is prepared. Each of the isolating layer patterns has an upper surface higher than that of each of the active patterns. A spacer layer having a uniform thickness is formed on the substrate. The spacer layer is etched to form a spacer on a sidewall of each of the isolating layer patterns. A gate structure is formed on each of the active patterns. A selective epitaxial growth (SEG) process is performed on the active patterns having the gate structure to form isolated epitaxial layers that have upper surfaces higher than those of the isolating layer patterns, on the active patterns. Related semiconductor devices are also provided.
摘要:
An electronic device that includes a first programmable metallization cell (PMC) that includes an active electrode; an inert electrode; and a solid electrolyte layer disposed between the active electrode and the inert electrode; and a second PMC that includes an active electrode; an inert electrode; and a solid electrolyte layer disposed between the active electrode and the inert electrode, wherein the first and second PMCs are electrically connected in anti-parallel.
摘要:
A semiconductor device comprises a substrate and first and second stress-generating epitaxial regions on the substrate and spaced apart from each other. A channel region is on the substrate and positioned between the first and second stress-generating epitaxial regions. A gate electrode is on the channel region. The channel region is an epitaxial layer, and the first and second stress-generating epitaxial regions impart a stress on the channel region.
摘要:
Methods for fabricating a metal silicide layer and for fabricating a semiconductor device having such a metal silicide layer are provided wherein, in an embodiment, the method includes the steps of forming a metal layer on a substrate, performing a first thermal process on the substrate to allow the substrate and the metal layer to react with react other to form a first pre-metal silicide layer, removing an unreacted portion of the metal layer, and performing a second thermal process on the substrate to change the first pre-metal silicide layer into a second pre-metal silicide layer and then to melt the second pre-metal silicide layer to change the second pre-metal silicide layer into a metal silicide layer.
摘要:
A memory array includes a plurality of magneto-resistive changing memory cells. Each resistive changing memory cell is electrically between a source line and a bit line and a transistor electrically between the resistive changing memory cell and the bit line. The transistor has a gate electrically between a source region and a drain region and the source region being electrically between the magneto-resistive changing memory cell and the gate. A word line is electrically coupled to the gate. A bit line charge accumulation sensing for magneto-resistive changing memory is also disclosed.
摘要:
A memory array includes a base circuitry layer and a plurality of memory array layers stacked sequentially to form the memory array. Each memory array layer is electrically coupled to the base circuitry layer. Each memory array layer includes a plurality of memory units. Each memory unit includes a vertical pillar transistor electrically coupled to a memory cell.