Abstract:
The present invention provides a semiconductor package structure, which includes a substrate having a top surface and a back surface, a plurality of first connecting points on the top surface and a plurality of second connecting points on the back surface; a chip having an active surface and back surface, a plurality of pads on the active surface, and the chip is attached on the top surface of the substrate; a plurality of wires is electrically connected the plurality of pads on the active surface of the chip with the plurality of first connecting points on the top surface of substrate; a first encapsulant is filled to cover portion of the plurality of wires, the chip, and the portion of top surface of the substrate; a second encapsulate is filled to cover the first encapsulant, the plurality of wires and is formed on portion of the top surface of the substrate, in which the Yang's module of the second encapsulant is different with that of the first encapsulant; and a plurality of connecting components is disposed on the back surface of the substrate and is electrically connected the plurality of second connecting points.
Abstract:
A seawater desalination device includes a seawater reservoir having a bottom wall and adapted for holding seawater, an evaporator adapted for evaporating the seawater held in the seawater reservoir into water vapor, osmosis membrane modules installed in the seawater reservoir and spaced above the bottom wall of the seawater reservoir, each osmosis membrane having membranes for the passing of the water vapor evaporated by the evaporator and a water vapor accumulation chamber surrounded by the membranes and a suction pipe connected to the water vapor accumulation chamber, and a pump unit having a pipe connected to the suction pipe of each osmosis membrane module and adapted for drawing water vapor out of the water vapor accumulation chamber of each osmosis membrane module.
Abstract:
A multi-chip package including a carrier, at least one first chip, and a second chip is provided. The first chip is electrically connected to the carrier and disposed on the carrier. The second chip is electrically connected to the first chip and the carrier. A part of the second chip is disposed on the first chip and another part of the second chip is disposed on the carrier. A method of fabricating the multi-chip package is also provided.
Abstract:
Disclosed are methods of identifying microRNA motifs or microRNA precursors for a target gene or a set of target genes. Also disclosed are related computer-readable media.
Abstract:
The present invention is related to a method for manufacturing lead frames and a lead frame material including an intermediate layer and a top layer. The intermediate layer is composed of a layer of nickel-cobalt alloy having 5 to 30 wt. % of cobalt and a thickness of 3 to 20 microinches and a layer of nickel or nickel alloy having a thickness of 10 to 80 microinches. The intermediate layer can inhibit the diffusion of the base metal to the surface of the leads. The top layer consisting of gold or gold alloy, which is composed of gold and at least one metal selected from the group consisting of palladium, silver, tin and copper and has at least 60 weight percent gold, has a thickness of 0.1 to 5 microinches.
Abstract:
A programmable metallization device comprises a first electrode and a second electrode, and a first dielectric layer, a second dielectric layer, and an ion-supplying layer in series between the first and second electrodes. In operation, a conductive bridge is formed or destructed in the first dielectric layer to represent a data value. During read, a read bias is applied that is sufficient to cause formation of a transient bridge in the second dielectric layer, and make a conductive path through the cell if the bridge is present in the first dielectric layer. If the bridge is not present in the first dielectric layer during the read, then the conductive path is not formed. Upon removal of the read bias voltage any the conductive bridge formed in the second dielectric layer is destructed while the conductive bridge in the corresponding other first dielectric layer, if any, remains.
Abstract:
A programmable metallization device comprises a first electrode and a second electrode, and a first dielectric layer, a second dielectric layer, and an ion-supplying layer in series between the first and second electrodes. In operation, a conductive bridge is formed or destructed in the first dielectric layer to represent a data value. During read, a read bias is applied that is sufficient to cause formation of a transient bridge in the second dielectric layer, and make a conductive path through the cell if the bridge is present in the first dielectric layer. If the bridge is not present in the first dielectric layer during the read, then the conductive path is not formed. Upon removal of the read bias voltage any the conductive bridge formed in the second dielectric layer is destructed while the conductive bridge in the corresponding other first dielectric layer, if any, remains.
Abstract:
In accordance with an embodiment, a substrate layout comprises a ground plane of a first power loop on a layer of a substrate, a first trace rail on the layer extending along a first periphery of the ground plane, and a first perpendicular trace coupled to the first trace rail. The ground plane is between the first trace rail and a die area, and the first perpendicular trace extends perpendicularly from the first trace rail. The first trace rail and the first perpendicular trace are components of a second power loop.
Abstract:
A tactile display writer unit includes a probe having a contact tip, and at least a first actuator and a second actuator coupled to the probe, whereby activation of the actuators results in a displacement of the probe tip in one or more of a z-direction and in a lateral direction having a vector in an x-y plane. Also, a display writer includes a plurality of such units supported in an x-y array. The writer units may have a third actuator coupled to the probe. Also, a tactile vision system includes such a display writer, an image processor, and an image sensor. The processor transforms RGB image information from the image sensor into hue-based information having two or more attributes; and the actuators in the tactile display writer are activated by the information attributes. Also, a method for producing a tactile color stimulus at a site on the skin of a subject includes providing a probe having a contact tip; displacing the tip at the contact site in a direction generally normal to the skin surface at the site to an extent that relates one attribute of a hue-based model of the color, and displacing the tip in at least one lateral direction generally in a plane parallel to the skin surface at the site to an extent that relates to at least one additional attribute of the color.