FLUORINE-BASED HARDMASK REMOVAL
    21.
    发明申请
    FLUORINE-BASED HARDMASK REMOVAL 有权
    基于荧光的HARDMASK去除

    公开(公告)号:US20160086815A1

    公开(公告)日:2016-03-24

    申请号:US14543618

    申请日:2014-11-17

    Abstract: A method of removing titanium nitride hardmask is described. The hardmask resides above a low-k dielectric layer prior to removal and the low-k dielectric layer retains a relatively low net dielectric constant after the removal process. The low-k dielectric layer may be part of a dual damascene structure having copper at the bottom of the vias. A non-porous carbon layer is deposited prior to the titanium nitride hardmask removal to protect the low-k dielectric layer and the copper. The titanium nitride hardmask is removed with a gas-phase etch using plasma effluents formed in a remote plasma from a fluorine-containing precursor. Plasma effluents within the remote plasma are flowed into a substrate processing region where the plasma effluents react with the titanium nitride.

    Abstract translation: 描述了一种去除氮化钛硬掩模的方法。 在去除之前,硬掩模位于低k电介质层之上,并且低k电介质层在去除过程之后保持相对较低的净介电常数。 低k电介质层可以是在通孔底部具有铜的双镶嵌结构的一部分。 在氮化钛硬掩模去除之前沉积无孔碳层以保护低k电介质层和铜。 使用从含氟前体的远程等离子体中形成的等离子体流出物,用气相蚀刻去除氮化钛硬掩模。 远程等离子体内的等离子体流出物流入基板处理区域,其中等离子体流出物与氮化钛反应。

    Silicon germanium processing
    22.
    发明授权
    Silicon germanium processing 有权
    硅锗加工

    公开(公告)号:US09236265B2

    公开(公告)日:2016-01-12

    申请号:US14270060

    申请日:2014-05-05

    Abstract: Methods of selectively etching silicon germanium relative to silicon are described. The methods include a remote plasma etch using plasma effluents formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the silicon germanium. The plasmas effluents react with exposed surfaces and selectively remove silicon germanium while very slowly removing other exposed materials. Generally speaking, the methods are useful for removing Si(1-X)GeX (including germanium i.e. X=1) faster than Si(1-Y)GeY, for all X>Y. In some embodiments, the silicon germanium etch selectivity results partly from the presence of an ion suppression element positioned between the remote plasma and the substrate processing region.

    Abstract translation: 描述了相对于硅选择性地蚀刻硅锗的方法。 这些方法包括使用由含氟前体形成的等离子体流出物的远程等离子体蚀刻。 来自远程等离子体的等离子体流出物流入基板处理区域,其中等离子体流出物与硅锗反应。 等离子体流出物与暴露的表面反应并选择性地去除硅锗,同时非常缓慢地除去其它暴露的材料。 一般来说,对于所有的X> Y,这些方法可用于比Si(1-Y)GeY更快地除去Si(1-X)GeX(包括锗,即X = 1)。 在一些实施例中,硅锗蚀刻选择性部分地来自位于远程等离子体和基板处理区域之间的离子抑制元件的存在。

    NON-LOCAL PLASMA OXIDE ETCH
    23.
    发明申请
    NON-LOCAL PLASMA OXIDE ETCH 有权
    非本地等离子体氧化物蚀刻

    公开(公告)号:US20140166617A1

    公开(公告)日:2014-06-19

    申请号:US13790668

    申请日:2013-03-08

    Abstract: A method of etching exposed titanium oxide on heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor. Plasma effluents from the remote plasma are flawed into a substrate processing region where the plasma effluents may combine with a nitrogen-containing precursor such as an amine (N:) containing precursor. Reactants thereby produced etch, the patterned heterogeneous structures with high titanium oxide selectivity while the substrate is at elevated temperature. Titanium oxide etch may alternatively involve supplying a fluorine-containing precursor and a source of nitrogen-and-hydrogen-containing precursor to the remote plasma. The methods may be used to remove titanium oxide while removing little or no low-K dielectric, polysilicon, silicon nitride or titanium nitride.

    Abstract translation: 描述了在异质结构上蚀刻暴露的氧化钛的方法,并且包括由含氟前体形成的远程等离子体蚀刻。 来自远程等离子体的等离子体流出物有缺陷到基板处理区域,其中等离子体流出物可与含氮前体(例如含有胺(N))的前体结合。 因此,反应物在衬底处于升高的温度下产生蚀刻,具有高氧化钛选择性的图案化异质结构。 替代地,氧化钛蚀刻可以包括向远程等离子体供应含氟前体和含氮和氢的前体源。 该方法可用于除去少量或不含低K电介质,多晶硅,氮化硅或氮化钛的氧化钛。

    METHODS OF SELECTIVELY ETCHING SILICON NITRIDE

    公开(公告)号:US20240420962A1

    公开(公告)日:2024-12-19

    申请号:US18210918

    申请日:2023-06-16

    Abstract: Embodiments of the present disclosure are directed to selective etching processes. The processes include an etching chemistry (a plasma of a fluorine-containing precursor and a first gas mixture), and a passivating chemistry (a plasma of a sulfur-containing precursor and a second gas mixture). In some embodiments, the sulfur-containing precursor and the second gas mixture are present in a ratio of sulfur-containing precursor to second gas mixture in a range of from 0.01 to 5. The methods include etching a substrate having a plurality of alternating layers of silicon oxide and silicon nitride thereon and a trench formed through the plurality of alternating layers. The silicon nitride layers are selectively etched relative to the silicon oxide layers at an etch selectivity of greater than or equal to 500:1.

    ISOTROPIC SILICON NITRIDE REMOVAL
    26.
    发明申请

    公开(公告)号:US20210111033A1

    公开(公告)日:2021-04-15

    申请号:US16598167

    申请日:2019-10-10

    Abstract: Exemplary methods of etching a silicon-containing material may include flowing a fluorine-containing precursor into a remote plasma region of a semiconductor processing chamber. The fluorine-containing precursor may be characterized by a molecular formula of XFy, and y may be greater than or equal to 5. The methods may include forming a plasma within the remote plasma region to generate plasma effluents of the fluorine-containing precursor. The methods may include flowing the plasma effluents into a processing region of the semiconductor processing chamber. A substrate may be positioned within the processing region, and the substrate may include a trench formed through stacked layers including alternating layers of silicon nitride and silicon oxide. The methods may include laterally etching the layers of silicon nitride.

    GERMANIUM ETCHING SYSTEMS AND METHODS
    27.
    发明申请

    公开(公告)号:US20190043727A1

    公开(公告)日:2019-02-07

    申请号:US16056001

    申请日:2018-08-06

    Abstract: Exemplary methods for etching a germanium-containing material may include forming a plasma of a fluorine-containing precursor in a remote plasma region of a semiconductor processing chamber. The methods may include flowing effluents of the fluorine-containing precursor through apertures defined in a chamber component. The apertures may be coated with a catalytic material. The methods may include reducing a concentration of fluorine radicals in the plasma effluents with the catalytic material. The methods may also include delivering the plasma effluents to a processing region of the semiconductor processing chamber. A substrate having an exposed region of a germanium-containing material may be housed within the processing region. The methods may further include etching the germanium-containing material.

    Chlorine-based hardmask removal
    29.
    发明授权
    Chlorine-based hardmask removal 有权
    基于氯的硬掩模去除

    公开(公告)号:US09478434B2

    公开(公告)日:2016-10-25

    申请号:US14543683

    申请日:2014-11-17

    Abstract: A method of removing titanium nitride hardmask is described. The hardmask resides above a low-k dielectric layer prior to removal and the low-k dielectric layer retains a relatively low net dielectric constant after the removal process. The low-k dielectric layer may be part of a dual damascene structure having copper at the bottom of the vias. A non-porous carbon layer is deposited prior to the titanium nitride hardmask removal to protect the low-k dielectric layer and the copper. The titanium nitride hardmask is removed with a gas-phase etch using plasma effluents formed in a remote plasma from a chlorine-containing precursor. Plasma effluents within the remote plasma are flowed into a substrate processing region where the plasma effluents react with the titanium nitride.

    Abstract translation: 描述了一种去除氮化钛硬掩模的方法。 在去除之前,硬掩模位于低k电介质层之上,并且低k电介质层在除去过程之后保持相对较低的净介电常数。 低k电介质层可以是在通孔底部具有铜的双镶嵌结构的一部分。 在氮化钛硬掩模去除之前沉积无孔碳层以保护低k电介质层和铜。 使用在含氯前体的远程等离子体中形成的等离子体流出物,用气相蚀刻去除氮化钛硬掩模。 远程等离子体内的等离子体流出物流入基板处理区域,其中等离子体流出物与氮化钛反应。

    Fluorine-based hardmask removal
    30.
    发明授权
    Fluorine-based hardmask removal 有权
    基于氟的硬掩模去除

    公开(公告)号:US09355862B2

    公开(公告)日:2016-05-31

    申请号:US14543618

    申请日:2014-11-17

    Abstract: A method of removing titanium nitride hardmask is described. The hardmask resides above a low-k dielectric layer prior to removal and the low-k dielectric layer retains a relatively low net dielectric constant after the removal process. The low-k dielectric layer may be part of a dual damascene structure having copper at the bottom of the vias. A non-porous carbon layer is deposited prior to the titanium nitride hardmask removal to protect the low-k dielectric layer and the copper. The titanium nitride hardmask is removed with a gas-phase etch using plasma effluents formed in a remote plasma from a fluorine-containing precursor. Plasma effluents within the remote plasma are flowed into a substrate processing region where the plasma effluents react with the titanium nitride.

    Abstract translation: 描述了一种去除氮化钛硬掩模的方法。 在去除之前,硬掩模位于低k电介质层之上,并且低k电介质层在去除过程之后保持相对较低的净介电常数。 低k电介质层可以是在通孔底部具有铜的双镶嵌结构的一部分。 在氮化钛硬掩模去除之前沉积无孔碳层以保护低k电介质层和铜。 使用从含氟前体的远程等离子体中形成的等离子体流出物,用气相蚀刻去除氮化钛硬掩模。 远程等离子体内的等离子体流出物流入基板处理区域,其中等离子体流出物与氮化钛反应。

Patent Agency Ranking