Abstract:
Polishing pads having discrete and selectively arranged regions of varying porosity within a continuous phase of polymer material are provided herein. In one embodiment a polishing pad features a plurality of polishing elements each comprising a polishing surface and sidewalls extending downwardly from the polishing surface to define a plurality of channels disposed between the polishing elements, wherein one or more of the polishing elements is formed of a continuous phase of polymer material having one or more first regions comprising a first porosity and a second region comprising a second porosity, wherein the second porosity is less than the first porosity.
Abstract:
A method of depositing a coating and a layered structure is provided. A coating is deposited on a substrate to make a layered structure, such that an interface between the coating and the substrate is formed. The coating includes silicon, oxygen, and carbon, where the carbon doping in the coating increases between the interface and the top surface of the coating. The top surface of the coating is inherently hydrophobic and icephobic, and reduces the wetting of water or ice film on the layered structure, without requiring reapplication of the coating.
Abstract:
Implementations described herein generally relate to polishing articles and methods of manufacturing polishing articles used in polishing processes and cleaning processes. More particularly, implementations disclosed herein relate to composite polishing articles having graded properties. In one implementation, a polishing article is provided. The polishing article comprises one or more exposed first regions formed from a first material and having a first zeta potential and one or more second exposed regions formed from a second material and having a second zeta potential, wherein the first zeta potential is different from the second zeta potential.
Abstract:
Embodiments of the present disclosure provide for polishing pads that include at least one endpoint detection (EPD) window disposed through the polishing pad material, and methods of forming thereof. In one embodiment a method of forming a polishing pad includes forming a first layer of the polishing pad by dispensing a first precursor composition and a window precursor composition, the first layer comprising at least portions of each of a first polishing pad element and a window feature, and partially curing the dispensed first precursor composition and the dispensed window precursor composition disposed within the first layer.
Abstract:
The present disclosure relates generally to a polishing article, and apparatus and methods of chemical mechanical polishing substrates using the polishing article. In some embodiments, the polishing article, such as a polishing pad, includes multiple layers in which one or more layers (i.e., at least the top layer) includes a plurality of nano-fibers that a positioned to contact a substrate during a polishing process. In one embodiment, a polishing article comprises a layer having a thickness less than about 0.032 inches, and the layer comprising fibers having a diameter of about 10 nanometers to about 200 micro meters.
Abstract:
A method and apparatus for manufacturing polishing articles used in polishing processes are provided. In one implementation, a method of forming a polishing pad is provided. The method comprises depositing an uncured first layer of a pad forming photopolymer on a substrate. The method further comprises positioning a first optical mask over the first layer of the uncured pad forming photopolymer. The first optical mask includes a patterned sheet of material having at least one aperture. The method further comprises exposing the uncured first layer of the pad forming photopolymer to electromagnetic radiation to selectively polymerize exposed portions of the uncured first layer of the pad forming photopolymer to form pad-supporting structures within the first layer of pad forming photopolymer.
Abstract:
Implementations described herein generally relate to polishing articles and methods of manufacturing polishing articles used in polishing processes and cleaning processes. More particularly, implementations disclosed herein relate to composite polishing articles having graded properties. In one implementation, a polishing article is provided. The polishing article comprises one or more exposed first regions formed from a first material and having a first zeta potential and one or more second exposed regions formed from a second material and having a second zeta potential, wherein the first zeta potential is different from the second zeta potential.
Abstract:
A polishing pad for chemical mechanical polishing is provided. The polishing pad includes a base region having a supporting surface. The polishing pad further includes a plurality of polishing features forming a polishing surface, the polishing surface opposing the supporting surface. The polishing pad further includes one or more channels formed in an interior region of the polishing pad and extending at least partly around a center of the polishing pad, wherein each channel is fluidly coupled to at least one port.
Abstract:
Embodiments of the disclosure generally provides a method and apparatus for a polishing article or polishing pad having a microstructure that facilitates uniform conditioning when exposed to laser energy. In one embodiment, a polishing pad comprising a combination of a first material and a second material is provided, and the first material is more reactive to laser energy than the second material. In another embodiment, a method of texturing a composite polishing pad is provided. The method includes directing a laser energy source onto a surface of the polishing pad to affect a greater ablation rate within a first material having a greater laser absorption rate and a lesser ablation rate within a second material having a lesser laser absorption rate to provide a micro-textured surface consistent with microstructure of the composite polishing pad.
Abstract:
A method and apparatus for conditioning a polishing pad used in a substrate polishing process. In one embodiment, a method for conditioning a polishing pad utilized to polish a substrate is provided. The method includes providing relative motion between an optical device and a polishing pad having a polishing medium disposed thereon, and scanning a processing surface of the polishing pad with a laser beam to condition the processing surface, wherein the laser beam has a wavelength that is substantially transparent to the polishing medium, but is reactive with the material of the polishing pad.