Abstract:
An interposer (support substrate) for an opto-electronic assembly is formed to include a thermally-isolated region where temperature-sensitive devices (such as, for example, laser diodes) may be positioned and operate independent of temperature fluctuations in other areas of the assembly. The thermal isolation is achieved by forming a boundary of dielectric material through the thickness of the interposer, the periphery of the dielectric defining the boundary between the thermally isolated region and the remainder of the assembly. A thermo-electric cooler can be used in conjunction with the temperature-sensitive device(s) to stabilize the operation of these devices.
Abstract:
Embodiments herein describe optical interposers that utilize waveguides to detect light. For example, in one embodiment, an apparatus is provided that includes an optical detector having a first layer. The first layer includes at least one of polysilicon or amorphous silicon. The first layer forms a diode that includes a p-doped region and an n-doped region. The apparatus further includes a waveguide optically coupled to the diode and disposed on a different layer than the first layer.
Abstract:
A fiber array unit (FAU) includes a substrate, a plurality of optical fibers, and a lid. The substrate includes: an optical window extending through a layer of non-transparent material, a plurality of grooves, and an alignment protrusion configured to mate with an alignment receiver. The plurality of optical fibers are disposed in the plurality of grooves. The alignment protrusion is configured to align the plurality of optical fibers with an external device when mated with the alignment receiver. The plurality of optical fibers is disposed between the lid and the substrate.
Abstract:
By determining an alignment point for a photonic element in a substrate of a given material; applying, via a laser aligned with the photonic element according to the alignment point, an etching pattern to the photonic element to produce a patterned region and an un-patterned region in the photonic element, wherein applying the etching pattern alters a chemical bond in the given material for the patterned region of the photonic element that increases a reactivity of the given material to an etchant relative to a reactivity of the un-patterned region, and wherein the patterned region defines an engagement feature in the un-patterned region that is configured to engage with a mating feature on a Photonic Integrated Circuit (PIC); and removing the patterned region from the photonic element via the etchant, various systems and methods may make use of laser patterning in optical components to enable alignment of optics to chips.
Abstract:
An apparatus, comprising: a silicon substrate; and a quantum dot laser comprising: a base layer of a III-V semiconductor material, bonded with the silicon substrate; and at least one layer grown epitaxially from the base layer, wherein the at least one layer comprises a quantum dot layer. The apparatus further comprises a photonic element, fabricated on the silicon substrate and including a waveguide optically aligned with the quantum dot layer.
Abstract:
An apparatus comprises a plurality of optical fibers and a lid member having one or more surfaces with grooves formed therein. The lid member defines a first plurality of grooves that are each dimensioned to partly receive an optical fiber of the plurality of optical fibers. The apparatus further comprises a substrate comprising a plurality of waveguides arranged at a predefined depth relative to a reference surface of the substrate, and a plurality of ribs extending from the reference surface. Each rib of the plurality of ribs is dimensioned to engage with a respective groove of a second plurality of grooves of the lid member. Engaging the plurality of ribs of the substrate with the second plurality of grooves of the lid member provides an optical alignment of the plurality of optical fibers with the plurality of waveguides.
Abstract:
Embodiments herein describe a photonic chip which includes a coupling interface for evanescently coupling the chip to a waveguide on an external substrate. In one embodiment, the photonic chip includes a tapered waveguide that aligns with a tapered waveguide on the external substrate. The respective tapers of the two waveguides are inverted such that as the width of the waveguide in the photonic chip decreases, the width of the waveguide on the external substrate increases. In one embodiment, these two waveguides form an adiabatic structure where the optical signal transfers between the waveguides with minimal or no coupling of the optical signal to other non-intended modes. Using the two waveguides, optical signals can be transmitted between the photonic chip and the external substrate.
Abstract:
A wafer comprising: a silicon substrate; a base layer of a predetermined thickness of a III-V semiconductor material bonded with the silicon substrate; and at least one layer grown on the base layer to form a plurality of quantum dot lasers.
Abstract:
Embodiments herein describe an apparatus for coupling a photonic chip with a plurality of optical fibers. In one embodiment, the apparatus comprises a first plurality of alignment features that correspond to a second plurality of alignment features associated with the photonic chip. Further, the apparatus comprises a plurality of grooves for receiving the plurality of optical fibers. In one embodiment, the apparatus comprises a plurality of waveguides for transmitting or receiving an optical signal. The plurality of waveguides is optically coupled to the photonic chip, as well as the plurality of optical fibers. In one embodiment, the plurality of waveguides is passively aligned with a second plurality of waveguides associated with the photonic chip.
Abstract:
Embodiments herein describe a photonic device that includes a germanium photodetector coupled to multiple silicon waveguides. In one embodiment, the silicon waveguides optically couple to a layer of germanium material. In one embodiment, if the germanium material forms a polygon, then a respective silicon waveguide optically couple to each of the corners of the polygon. Each of the plurality of input silicon waveguides may be arranged to transmit light in a direction under the germanium that is offset relative to both sides of the germanium forming the respective corner. In another example, the germanium material may be a circle or ellipse in which case the silicon waveguides terminate at or close to a non-straight, curved surface of the germanium material. As described below, optically coupling the silicon waveguides at a non-straight surface can reduce the distance charge carriers have to travel in the optical detector which can improve bandwidth.