SYSTEMS AND METHODS FOR ADDRESSING DEVICES IN A SUPERCONDUCTING CIRCUIT

    公开(公告)号:US20210057631A1

    公开(公告)日:2021-02-25

    申请号:US16996595

    申请日:2020-08-18

    Abstract: Addressing a superconducting flux storage device may include applying a bias current, a low-frequency flux bias, and a high-frequency flux bias in combination to cause a combined address signal level to exceed a defined address signal latching level for the superconducting flux storage device. A bias current that, in combination with a low-frequency flux bias and a high-frequency flux bias, causes a combined address signal level to exceed a defined address signal latching level for a superconducting flux storage device is at least reduced by an asymmetry in the Josephson junctions of the CJJ. A low-frequency flux bias that, in combination with a bias current and a high-frequency flux bias, causes a combined address signal level to exceed a defined address signal latching level for a superconducting flux storage device is at least reduced by an asymmetry in the Josephson junctions of the CJJ.

    SYSTEMS AND METHODS FOR FABRICATION OF SUPERCONDUCTING DEVICES

    公开(公告)号:US20200266234A1

    公开(公告)日:2020-08-20

    申请号:US16389669

    申请日:2019-04-19

    Abstract: Apparatus and methods advantageously provide parallel-plate capacitors in superconducting integrated circuits. A method may include forming a metal-oxide layer to overlie at least a portion of a first capacitor plate, the first capacitor plate comprising a superconductive material, and depositing a second capacitor plate to overlie at least a portion of the metal-oxide layer, the second capacitor plate comprising a superconductive material. The method may include depositing a base electrode of superconductive material to overlie at least a portion of a substrate, depositing the first capacitor plate to overlie at least a portion of the base electrode, and superconductingly electrically coupled to the base electrode, and depositing a counter electrode of superconductive material to overlie at least a portion of the second capacitor plate, the counter electrode superconductingly electrically coupled to the second capacitor plate. The superconducting integrated circuit may include a parallel-plate capacitor and a Josephson junction.

    SYSTEMS AND DEVICES FOR FILTERING ELECTRICAL SIGNALS

    公开(公告)号:US20190089031A1

    公开(公告)日:2019-03-21

    申请号:US16134592

    申请日:2018-09-18

    Abstract: Adaptions and improvements to coaxial metal powder filters include distributing a dissipative matrix mixture comprising superconductive material, metal powder, epoxy, and/or magnetic material within a volume defined by an outer tubular conductor and inner conductor. The frequency response of the filter may be tuned by exploiting the energy gap frequency of superconductive material in the dissipative matrix. The inner surface of the outer tubular conductor may be covered with a superconductive material. For a dissipative matrix comprising magnetic material or superconductive powder particles of a certain size, an external magnetic field can be applied to tune the frequency response of the filter.

    Quantum annealing debugging systems and methods

    公开(公告)号:US12248849B2

    公开(公告)日:2025-03-11

    申请号:US18444208

    申请日:2024-02-16

    Abstract: Computational systems and methods employ characteristics of a quantum processor determined or sampled between a start and an end of an annealing evolution per an annealing schedule. The annealing evolution can be reinitialized, reversed or continued after determination. The annealing evolution can be interrupted. The annealing evolution can be ramped immediately prior to or as part of determining the characteristics. The annealing evolution can be paused or not paused immediately prior to ramping. A second representation of a problem can be generated based at least in part on the determined characteristics from an annealing evolution performed on a first representation of the problem. The determined characteristics can be autonomously compared to an expected behavior, and alerts optionally provided and/or the annealing evolution optionally terminated based on the comparison. Iterations of annealing evolutions may be performed until an exit condition occurs.

    KINETIC INDUCTANCE FOR COUPLERS AND COMPACT QUBITS

    公开(公告)号:US20250040454A1

    公开(公告)日:2025-01-30

    申请号:US18790374

    申请日:2024-07-31

    Abstract: A circuit can include a galvanic coupling of a coupler to a qubit by a segment of kinetic inductance material. The circuit can include a galvanic kinetic inductance coupler having multiple windings. The circuit can include a partially-galvanic coupler having multiple windings. The partially-galvanic coupler can include a magnetic coupling and a galvanic coupling. The circuit can include an asymmetric partially-galvanic coupler having a galvanic coupling and a first magnetic coupling to one qubit and a second magnetic coupling to a second qubit. The circuit can include a compact kinetic inductance qubit having a qubit body loop comprising a kinetic inductance material. A multilayer integrated circuit including a kinetic inductance layer can form a galvanic kinetic inductance coupling. A multilayer integrated circuit including a kinetic inductance layer can form at least a portion of a compact kinetic inductance qubit body loop.

    SYSTEMS AND METHODS FOR TUNABLE PARAMETRIC AMPLIFICATION

    公开(公告)号:US20250038722A1

    公开(公告)日:2025-01-30

    申请号:US18716679

    申请日:2022-12-06

    Abstract: In an implementation, a tunable traveling wave parametric amplifier (TWPA) includes a T-stage that includes a first DC-SQUID and a first interface inductively communicatively coupled to the first DC SQUID operable to apply a first bias to the first DC SQUID. The T-stage also includes a second DC-SQUID electrically communicatively coupled to the first DC-SQUID in series via a center node, and a second interface inductively communicatively coupled to the second DC-SQUID operable to apply a second bias to the second DC-SQUID. The TWPA also includes a shunting resonator communicatively coupled to the center node via a coupling capacitance. The shunting resonator includes a third DC-SQUID, and a third interface inductively communicatively coupled to the third DC SQUID operable to apply a third bias to the third DC SQUID. The first, second, and third biases are adjustable to improve a bandwidth of the tunable TWPA.

    QUANTUM ANNEALING DEBUGGING SYSTEMS AND METHODS

    公开(公告)号:US20250013900A1

    公开(公告)日:2025-01-09

    申请号:US18444208

    申请日:2024-02-16

    Abstract: Computational systems and methods employ characteristics of a quantum processor determined or sampled between a start and an end of an annealing evolution per an annealing schedule. The annealing evolution can be reinitialized, reversed or continued after determination. The annealing evolution can be interrupted. The annealing evolution can be ramped immediately prior to or as part of determining the characteristics. The annealing evolution can be paused or not paused immediately prior to ramping. A second representation of a problem can be generated based at least in part on the determined characteristics from an annealing evolution performed on a first representation of the problem. The determined characteristics can be autonomously compared to an expected behavior, and alerts optionally provided and/or the annealing evolution optionally terminated based on the comparison. Iterations of annealing evolutions may be performed until an exit condition occurs.

Patent Agency Ranking