Abstract:
A detergent additive comprising an active, the active comprising one or both of tetraacetylethylenediamine and triacetylethylenediamine; and polyvinyl butyral. A method of preparing a detergent additive comprising providing a solvent to a reaction mixture; providing polyvinyl butyral to the reaction mixture; providing an active to the reaction mixture, the active comprising one or both of tetraacetylethylenediamine and triacetylethylenediamine; mixing the reaction mixture; and spray-drying the reaction mixture.
Abstract:
A polymer composite comprising quantum dots; said polymer composite comprising: (a) quantum dots; (b) polymerized units of a first compound having at least one readily polymerizable vinyl group, a molecular weight from 300 to 20,000 and at least one continuous acyclic hydrocarbyl chain of at least five carbon atoms; and (c) polymerized units of a second compound having at least one readily polymerizable vinyl group and a molecular weight from 100 to 750; wherein a readily polymerizable vinyl group is part of a (meth)acrylate ester group or is attached directly to an aromatic ring, and the molecular weight of the first compound minus the molecular weight of the second compound is at least 100.
Abstract:
A method for encapsulating quantum dots. The method comprises steps of: (a) mixing quantum dots with a polymer having a molecular weight from 1,000 to 200,000 and a solubility parameter from 14 to 18.75 (J/cm3)1/2 and a solvent to form a mixture; and (b) spray drying the mixture to produce an encapsulated quantum dot powder.
Abstract:
The present invention provides polymer composites, such as films, having dispersed therein quantum dots, wherein the polymer comprises (b) polymerized units of a first compound comprising from one to 6 thiol groups, the compound having a molecular weight from 300 to 20,000 and having at least one continuous acyclic hydrocarbyl chain of at least three carbon atoms, or, preferably, at least 5 carbon atoms; and (c) polymerized units of a second compound having a molecular weight from 100 to 750 and comprising at least two polymerizable vinyl groups as part of a (meth)acrylate ester group or attached directly to an aromatic ring and, wherein the molecular weight of the first compound minus the molecular weight of the second compound is at least 100. The polymer composites provide more stably dispersed and durable quantum dot compositions for use in, for example, display devices.
Abstract:
Prepare nanofoam by (a) providing an aqueous solution of a flame retardant dissolved in an aqueous solvent, wherein the flame retardant is a solid at 23° C. and 101 kiloPascals pressure when in neat form; (b) providing a fluid polymer composition selected from a solution of polymer dissolved in a water-miscible solvent or a latex of polymer particles in a continuous aqueous phase; (c) mixing the aqueous solution of flame retardant with the fluid polymer composition to form a mixture; (d) removing water and, if present, solvent from the mixture to produce a polymeric composition having less than 74 weight-percent flame retardant based on total polymeric composition weight; (e) compound the polymeric composition with a matrix polymer to form a matrix polymer composition; and (f) foam the matrix polymer composition into nanofoam having a porosity of at least 60 percent.
Abstract:
Provided is an aqueous composition having pH of 8 or higher and comprising (i) a solid phase comprising dispersed particles that comprise ethylcellulose polymer, (ii) fatty acid, wherein 25 mole % to 100 mole % of said fatty acid is in ionic form, (iii) 0% to 0.1% colloid stabilizer, by weight based on the dry weight of said ethylcellulose polymer, (iv) 0% to 7% plasticizer, by weight based on the dry weight of said ethylcellulose polymer, and (v) one or more cations of an alkali metal or an alkaline earth, wherein the equivalent ratio of said cations to said fatty acid is 0.1:1 to 2:1. Also provided are a method of spray drying an aqueous composition and a powder composition.
Abstract:
At least a two-layer protective coating system including: (a) a layer of a fusion bonded epoxy, and (b) a layer of a spray-dried protective powder coating disposed on at least a portion of the top surface of the fusion bonded epoxy layer (a), said powder coating being cured to form a protective coating on at least a portion of the fusion bonded epoxy layer; a process for preparing the above two-layer protective coating system; a substrate such as a metal pipe coated with the above two-layer protective coating system; and a process for producing a coated article such as a coated metal pipe using the above two-layer protective coating system.
Abstract:
A method for forming lithium metal oxides comprised of Ni, Mn and Co useful for making lithium ion batteries comprises providing precursor particulates of Ni and Co that are of a particular size that allows the formation of improved lithium metal oxides. The method allows the formation of lithium metal oxides having improved safety while retaining good capacity and rate capability. In particular, the method allows for the formation of lithium metal oxide where the primary particle surface Mn/Ni ratio is greater than the bulk Mn/Ni. Likewise the method allows the formation of lithium metal oxides with secondary particles having much higher densities allowing for higher cathode densities and battery capacities while retaining good capacity and rate performance.
Abstract:
The present invention relates to a process for preparing stable aqueous epoxy resin dispersions with polyvinyl alcohol (PVOH) in finely divided, solid, or granular form as a primary dispersant, and stable aqueous epoxy resin dispersions made thereof. Specifically, the process is a solvent free continuous extrusion dispersion process.
Abstract:
A composite polymer composition comprising: the emulsion polymerization product of: (i) an aqueous polyolefin dispersion comprising the melt kneading product of one or more polyolefins, from 2 to 25 wt % of one or more dispersion stabilizing agents and water, and (ii) one or more (meth)acrylic monomers; wherein the one or more polyolefins have a Tg equal to or less than 50° C.; and wherein the melt kneading product (i) comprises polymer particles having a volume average particle size between 150 nm and 2000 nm dispersed in the water; and wherein the one or more (meth)acrylic monomers polymerize onto the polymer particles form composite polymer particles is provided. Also provided is a method of making the composition and impact modifiers comprising the composition.