摘要:
A method of making an electrostatic chuck comprising positioning a plate into a channel in a body to form a plenum and inserting a dielectric component into an opening in the plate, where the dielectric component defines a portion of a passage from the plenum. Thereafter, depositing a dielectric layer covering at least a portion of the body and at least a portion of the plate to form a support surface. The dielectric layer is polished to a specified thickness. In one embodiment, the polishing process forms an opening through the dielectric layer to enable the dielectric component to define a passage between the support surface and the plenum. In another embodiment, at least a portion of the dielectric layer is porous proximate the dielectric component such that the porous dielectric layer and the dielectric component form a passage between the support surface and the plenum. In a further embodiment, a hole is formed through the dielectric layer and the hole in the dielectric layer and the dielectric component form a passage between the support surface and the plenum.
摘要:
Embodiments of the present invention generally provide a plasma source apparatus, and method of using the same, that is able to generate radicals and/or gas ions in a plasma generation region that is symmetrically positioned around a magnetic core element by use of an electromagnetic energy source. In general, the orientation and shape of the plasma generation region and magnetic core allows for the effective and uniform coupling of the delivered electromagnetic energy to a gas disposed in the plasma generation region. In general, the improved characteristics of the plasma formed in the plasma generation region is able to improve deposition, etching and/or cleaning processes performed on a substrate or a portion of a processing chamber that is disposed downstream of the plasma generation region.
摘要:
Apparatus and methods for processing a substrate and processing a process chamber are provided. In one embodiment, an apparatus is provided for processing a substrate including a power source, a switch box coupled to the power source and the switch box having a switch interchangeable between a first position and a second position, a first match box coupled to the switch box, a plasma generator coupled to the first match box, a second match box coupled to the switch box, and a remote plasma source coupled to the second match box.
摘要:
A system to form a dielectric layer on a substrate from a plasma of dielectric precursors is described. The system may include a deposition chamber, a substrate stage in the deposition chamber to hold the substrate, and a remote plasma generating system coupled to the deposition chamber, where the plasma generating system is used to generate a dielectric precursor having one or more reactive radicals. The system may also include a radiative heating system to heat the substrate that includes at least one light source, where at least some of the light emitted from the light source travels through the top side of the deposition chamber before reaching the substrate. The system may also include a precursor distribution system to introduce the reactive radical precursor and additional dielectric precursors to the deposition chamber. An in-situ plasma generating system may also be included to generate the plasma in the deposition chamber from the dielectric precursors supplied to the deposition chamber.
摘要:
A system to form a dielectric layer on a substrate from a plasma of dielectric precursors is described. The system may include a deposition chamber, a substrate stage in the deposition chamber to hold the substrate, and a remote plasma generating system coupled to the deposition chamber, where the plasma generating system is used to generate a dielectric precursor having one or more reactive radicals. The system may also include a precursor distribution system comprising a dual-channel showerhead positioned above the substrate stage. The showerhead may have a faceplate with a first set of openings through which the reactive radical precursor enters the deposition chamber, and a second set of openings through which a second dielectric precursor enters the deposition chamber. An in-situ plasma generating system may also be included to generate the plasma in the deposition chamber from the dielectric precursors supplied to the deposition chamber.
摘要:
Embodiments of the invention may generally provide a small volume electrochemical plating cell. The plating cell generally includes a fluid basin configured to contain a plating solution therein, the fluid basin having a substantially horizontal weir. The cell further includes an anode positioned in a lower portion of the fluid basin, the anode having a plurality of parallel channels formed therethrough, and a base member configured to receive the anode, the base member having a plurality of groves formed into an anode receiving surface, each of the plurality of grooves terminating into an annular drain channel. A membrane support assembly configured to position a membrane immediately above the anode in a substantially planar orientation with respect to the anode surface is provided, the membrane support assembly having a plurality of channels and bores formed therein.
摘要:
An electroless deposition system and electroless deposition stations are provided. The system includes a processing mainframe, at least one substrate cleaning station positioned on the mainframe, and an electroless deposition station positioned on the mainframe. The electroless deposition station includes an environmentally controlled processing enclosure, a first processing station configured to clean and activate a surface of a substrate, a second processing station configured to electrolessly deposit a layer onto the surface of the substrate, and a substrate shuttle positioned to transfer substrates between the first and second processing stations. The electroless deposition station also includes various fluid delivery and substrate temperature controlling devices to perform a contamination free and uniform electroless deposition process.
摘要:
An electroless deposition system is provided. The system includes a processing mainframe, at least one substrate cleaning station positioned on the mainframe, and an electroless deposition station positioned on the mainframe. The electroless deposition station includes an environmentally controlled processing enclosure, a first processing station configured to clean and activate a surface of a substrate, a second processing station configured to electrolessly deposit a layer onto the surface of the substrate, and a substrate transfer shuttle positioned to transfer substrates between the first and second processing stations. The system also includes a substrate transfer robot positioned on the mainframe and configured to access an interior of the processing enclosure.
摘要:
A method and apparatus for plating substrates, wherein the apparatus includes a central substrate transfer enclosure having at least one substrate transfer robot positioned therein. A substrate activation chamber in communication with the central substrate transfer enclosure is provided and is accessible to the at least one substrate transfer robot. A substrate plating chamber in communication with the central substrate transfer enclosure is provided and is accessible to the at least one substrate transfer robot. A substrate spin rinse dry chamber in communication with the central substrate transfer enclosure is provided and is accessible to the at least one substrate transfer robot, and an annealing chamber in communication with the central substrate transfer enclosure is provided and is accessible to the at least one substrate transfer robot. At least one substrate pod loader in communication with the substrate transfer chamber and accessible to the at least one substrate transfer robot is also provided.
摘要:
The present invention provides a method and apparatus for processing substrates. A processing system includes a chamber having a top mounted pumping assembly. The chamber comprises a ceiling disposed on a chamber body and having an opening formed therein. The pumping assembly is connected to the ceiling and registered with the opening. The pumping assembly operates to evacuate the chamber to a desired pressure. One or more gases are supplied to the chamber via a gas distribution chamber and are exhausted from the chamber via the opening formed in the ceiling.