Abstract:
An object is to provide a laminated piezoelectric element capable of preventing a short circuit between adjacent piezoelectric films and an electroacoustic transducer using the laminated piezoelectric element. The object is solved by laminating a plurality of layers of piezoelectric films polarized in a thickness direction, in which a piezoelectric layer is interposed between two thin film electrodes, and causing polarization directions of the adjacent piezoelectric films to be opposite to each other.
Abstract:
An object is to provide a piezoelectric film that has excellent flexibility in a high temperature environment at higher than 50° C. and exhibits good flexibility even at room temperature, a laminated piezoelectric element in which the piezoelectric films are laminated, and an electroacoustic transducer using the piezoelectric film or the laminated piezoelectric element. The object is solved by the piezoelectric film including: a polymer-based piezoelectric composite material in which piezoelectric particles are dispersed in a matrix including a polymer material; and electrode layers provided on both surfaces of the polymer-based piezoelectric composite material, in which a loss tangent at a frequency of 1 Hz according to dynamic viscoelasticity measurement has a maximal value of greater than or equal to 0.1 existing in a temperature range of higher than 50° C. and lower than or equal to 150° C., and has a value of greater than or equal to 0.08 at 50° C.
Abstract:
An object is to provide a piezoelectric film that has excellent flexibility in a sub-zero environment and exhibits the required flexibility even at room temperature, a laminated piezoelectric element in which the piezoelectric films are laminated, and an electroacoustic transducer using the piezoelectric film or the laminated piezoelectric element. The object is solved by the piezoelectric film including: a polymer-based piezoelectric composite material in which piezoelectric particles are dispersed in a matrix including a polymer material; and electrode layers formed on both surfaces of the polymer-based piezoelectric composite material, in which a loss tangent at a frequency of 1 Hz according to dynamic viscoelasticity measurement has a maximal value of greater than or equal to 0.1 existing in a temperature range of higher than or equal to −80° C. and lower than 0° C., and has a value of greater than or equal to 0.05 at 0° C.
Abstract:
Provided are an electroacoustic conversion film web, an electroacoustic conversion film, and a method of manufacturing an electroacoustic conversion film web in which costs can be reduced by reducing the number of operations without damage to thin film electrodes, the points of electrode lead-out portions can be freely determined, and thus high productivity can be achieved. A preparation step of preparing an electrode laminated body in which a single thin film electrode and a single protective layer are laminated and a lamination step of laminating the electrode laminated body and an piezoelectric layer are included. A non-adhered portion that is not adhered to the piezoelectric layer is provided in at least one end portion of the thin film electrode in a case where the electrode laminated body and the piezoelectric layer are laminated in the lamination step.
Abstract:
Provided are an electroacoustic transduction film in which conversion between a vibration and a voltage is able to be appropriately performed without the occurrence of dielectric breakdown of the air between upper and lower thin film electrodes even when a high voltage is applied therebetween, a user is able to be prevented from coming into contact with a piezoelectric layer, and high productivity is achieved, and a manufacturing method of an electroacoustic transduction film. A piezoelectric layer which stretches and contracts in response to a state of an electric field, an upper thin film electrode formed on one principal surface of the piezoelectric layer, a lower thin film electrode formed on the other principal surface of the piezoelectric layer, an upper protective layer formed on the upper thin film electrode, and a lower protective layer formed on the lower thin film electrode are included, and a groove which penetrates the thin film electrode and the protective layer is formed in at least a portion of an outer peripheral portion in a surface direction of at least one of the upper thin film electrode and the upper protective layer, or the lower thin film electrode and the lower protective layer.
Abstract:
A piezoelectric polymer composite material includes piezoelectric particles dispersed in a matrix made from a polymer material. The piezoelectric particles is composed primarily of lead zirconate titanate having a general formula of Pb(ZrxTi1−x)O3 and each of the piezoelectric particles contains a mixture of tetragonal crystals and rhombohedral crystals.
Abstract:
Provided is an electroacoustic converter film including: a polymeric composite piezoelectric body having piezoelectric particles dispersed in a viscoelastic matrix which is formed of a polymer material exhibiting viscoelasticity at ordinary temperatures; thin film electrodes formed on both sides of the polymeric composite piezoelectric body; and protective layers formed on surfaces of the thin film electrodes. The electroacoustic converter film serves as a speaker capable of being integrated with a flexible display without impairing lightweightness or flexibility, and has considerable frequency dispersion in the storage modulus and also has a local maximum of the loss tangent around ordinary temperatures. A flexible display, a vocal cord microphone and a musical instrument sensor, in each of which the electroacoustic converter film is used, are also provided.
Abstract:
A polymer composite piezoelectric body is obtained by conducting polarization treatment on a composite having piezoelectric particles uniformly mixed by dispersion in a polymer matrix containing cyanoethylated polyvinyl alcohol.