Abstract:
A measurement system and method are provided for use in characterizing a tissue. The system comprises a probe adapted for operating in either a scan mode or a measure mode, and a control unit for operating the probe. The probe comprises a sensing module for measuring one or more parameters indicative of one or more states of the tissue; and an attachment module configured and operable to enable selective operation of the probe in either one of the scan mode and the measure modes. The control unit is configured and operative to selectively operate the probe in either one of the scan and measure modes.
Abstract:
The present invention relates to probes, systems, and methods for tissue characterization by its dielectric properties, wherein a physical feature of the probe is designed to define and delimit a tissue volume, at a tissue edge, where characterization takes place. Thus, the probe for tissue-edge characterization comprises: a first inner conductor, which comprises: proximal and distal ends, with respect to a tissue edge, along an x-axis; a first sharp edge, inherently associated with the proximal end; at least one feature, issuing from the first inner conductor, substantially at the proximal end, for forming at least one additional sharp edge, operative to enhance localized electrical fringe fields in the tissue, within a generally predefined tissue volume, at the tissue edge, the tissue volume being generally defined by physical parameters associated with the at least one feature; and a dielectric material, which encloses the conductor, in the y-z planes.
Abstract:
The present invention relates to probes, systems, and methods for tissue characterization by its dielectric properties, wherein a physical feature of the probe is designed to define and delimit a tissue volume, at a tissue edge, where characterization takes place. Thus, the probe for tissue-edge characterization comprises: a first inner conductor, which comprises: proximal and distal ends, with respect to a tissue edge, along an x-axis; a first sharp edge, inherently associated with the proximal end; at least one feature, issuing from the first inner conductor, substantially at the proximal end, for forming at least one additional sharp edge, operative to enhance localized electrical fringe fields in the tissue, within a generally predefined tissue volume, at the tissue edge, the tissue volume being generally defined by physical parameters associated with the at least one feature; and a dielectric material, which encloses the conductor, in the y-z planes.
Abstract:
A device and method for tissue characterization are provided, the device comprising: a structure; a first mechanism, associated with said structure, configured for exerting a first force on a tissue, for fixing the tissue to said structure, so as to substantially immobilize the tissue; and a second mechanism, associated with said structure, configured for pressing a sensor against an external surface of the immobilized tissue, thereby exerting a second force on the immobilized tissue, wherein at least a component of said first force is in opposition to at least a component of said second force, forcing the immobilized tissue against said sensor, and forcing said sensor against the immobilized tissue, bringing about an effective contact between said sensor and the immobilized tissue.
Abstract:
An integrated tool is provided, having a tissue-type sensor, for determining the tissue type at a near zone volume of a tissue surface, and a distance-measuring sensor, for determining the distance to an interface with another tissue type, for (i) confirming an existence of a clean margin of healthy tissue around a malignant tumor, which is being removed, and (ii) determining the depth of the clean margin. The integrated tool may further include a position tracking device and an incision instrument. The soft tissue may be held within a fixed frame, while the tumor is being removed. Additionally a method for malignant tumor removal is provided, comprising, fixing the soft tissue within a frame, performing imaging with the hand-held, integrated tool, from a plurality of locations and orientations around the soft tissue, reconstructing a three-dimensional image of the soft tissue and the tumor within, defining a desired clean margin on the reconstructed image, calculating a recommended incision path, displaying the recommended path on the reconstructed image, and cutting the tissue while determining its type, at the near zone volume of the incision surface. The method may further include continuously imaging with the cutting, continuously correcting the reconstructed image and the recommended incision path, and continuously determining the tissue type, at the near zone volume of the incision surface.
Abstract:
A medical device including a tissue characterization probe having an elongated carrier for carrying an array of tissue characterization sensors arranged in a spaced-apart relationship at least along an axis of said carrier within at least a distal portion thereof, such that progression of the probe through a tissue mass provides for locating and determining a dimension of an abnormal tissue specimen inside said tissue mass based on characterization signals from the sensors in the array. The elongated carrier has two integral portions including said distal portion and a hollow portion extending between a proximal end of the carrier and said distal portion. The carrier is configured for passing a predetermined treatment tool through the hollow portion thereof and enabling at least a part of the treatment tool to project from the hollow portion and extend along the distal portion.
Abstract:
A surgical tool for use in a tissue removal procedure from a subject is described. The surgical tool has proximal and distal regions and at least one sensor for sensing one or more predetermined conditions located at a distal region of the surgical tool. And a substantially flat signal transmission structure electrically connected with the at least one sensor and extending between the location at the distal region and the proximal region. The signal transmission structure is configured for providing impedance controlled signal transmission between the at least one sensor and the proximal region.
Abstract:
A medical device is presented for use in tissue characterization and treatment. The device comprises: a tissue characterization probe comprising an elongated carrier carrying an array of tissue characterization sensors arranged in a spaced-apart relationship at least along an axis of said carrier, such that progression of the probe through a tissue mass provides for locating and determining a dimension of an abnormal tissue specimen inside said tissue mass based on characterization signals from the sensors in the array, thereby enabling consequent treatment of the abnormal tissue specimen by a treatment tool.
Abstract:
A probe device for use in a tissue inspection system is presented. The probe device comprises a probe body and a control unit at least partially incorporated in the probe body. The probe body carries at least a tissue characterization unit operable for providing sensing data indicative of at least one tissue property at measurement locations in the tissue portion being held by the probe. The control unit comprises: a processor utility for receiving and processing the sensing data and generating measured data indicative of a spatial profile of said at least one tissue property distribution within the tissue portion, and comprises at least one of the following: an imaging utility for receiving said measured data and generating and displaying an image indicative thereof thereby enabling a user to select a region of said tissue portion for further analysis; and a pattern generator module configured for receiving and analyzing said measured data and determining a pattern indicative of an arrangement of regions in said tissue portion, thereby enabling selection of at least one of the regions for further analysis.
Abstract:
A mapping system (200) including: (a) at least one external marker (210,212,214,216) adapted for positioning outside a target (520) to define a target context; (b) at least one target marker (230) adapted for positioning with the target; (c) a data acquisition tool (221) configured to provide position coordinates for at least one data point (220) at the target (520); and (d) a registration module (300) adapted to output position coordinates of said at least one data point relative to at least a portion of the target context.