Abstract:
A Schottky barrier diode includes: an n− type epitaxial layer disposed on a first surface of an n+ type silicon carbide substrate; a first p+ region disposed on the n− type epitaxial layer; an n type epitaxial layer disposed on the n− type epitaxial layer and the first p+ region; a second p+ region disposed on the n type epitaxial layer, and being in contact with the first p+ region; a Schottky electrode disposed on the n type epitaxial layer and the second p+ region; and an ohmic electrode disposed on a second surface of the n+ type silicon carbide substrate. Also, the first p+ region has a lattice shape including a plurality of vertical portions and horizontal portions connecting both ends of the respective vertical portions to each other.
Abstract:
A Schottky barrier diode and a method of manufacturing the diode are provided. The diode includes an n− type epitaxial layer disposed on a first surface of an n+ type silicon carbide substrate and a plurality of p+ regions disposed within the n− type epitaxial layer. An n+ type epitaxial layer is disposed on the n− type epitaxial layer, a Schottky electrode is disposed on the n+ type epitaxial layer, and an ohmic electrode is disposed on a second surface of the n+ type silicon carbide substrate. The n+ type epitaxial layer includes a plurality of pillar parts disposed on the n− type epitaxial layer and a plurality of openings disposed between the pillar parts and that expose the p+ regions. Each of the pillar parts includes substantially straight parts that contact the n− type epitaxial layer and substantially curved parts that extend from the substantially straight parts.
Abstract:
A method of manufacturing a semiconductor device may include forming a first n− type epitaxial layer by performing a first epitaxial growth on a first surface of an n+ type silicon carbide substrate, forming a photosensitive layer pattern on the first n− type epitaxial layer, etching the first n− type epitaxial layer by using the photosensitive layer pattern as a mask to form a first trench, forming a buffer layer on the first n− type epitaxial layer after the photosensitive layer pattern may be removed, etching the buffer layer to form a trench passivation layer in the first trench, forming an n− type epitaxial layer by performing a second epitaxial growth on the first n− type epitaxial layer, and forming a p type epitaxial layer by performing a third epitaxial growth on the n− type epitaxial layer other than the portion on which the trench passivation layer may be formed.
Abstract:
A semiconductor device includes an n− type layer on a first surface of the substrate, a p type region on a part of the n− type layer, a gate on the n− type layer and the p type region, a first gate protection layer on the gate and a second gate protection layer on the first gate protection layer, a source on the second gate protection layer and the p type region, and a drain on the second surface of the substrate.
Abstract:
A semiconductor device according to an exemplary embodiment of the present disclosure includes a substrate, an n− type layer, a plurality of trenches, a p type region, a p+ type region, an n+ type region, a gate electrode, a source electrode, and a drain electrode. The semiconductor device may include a plurality of unit cells. A unit cell among the plurality of unit cells may include a contact portion with which the source electrode and the n+ type region are in contact, a first branch part disposed above the contact portion on a plane, and a second branch part disposed below the contact portion on a plane, the plurality of trenches are separated from each other and disposed with a stripe shape on a plane.
Abstract:
A semiconductor device includes: an n+ type of silicon carbide substrate, an n− type of layer, first trenches, a p type of region, a p+ type of region, an n+ type of region, a gate electrode, a source electrode, and a drain electrode. The semiconductor device may include a plurality of unit cells, wherein one of the plurality of unit cells may include a contact portion at which the source electrode and the p+ type of region contact each other, an outer portion disposed at upper and lower portions of the contact portion in a plan view, and a connection portion connecting the contact portion to the outer portion, a width between the first trenches horizontally adjacent in the plan view in the contact portion is equal to a width between the first trenches horizontally adjacent in the plan view in the outer portion, and a width between the first trenches horizontally adjacent in the plan view in the connection portion is less than a width between the first trenches horizontally adjacent in the plan view in the contact portion.
Abstract:
A semiconductor device is provided and includes an n− type layer disposed at a substrate first surface. A trench, n type region, and p+ type region are disposed on the n− type layer. A p type region is disposed on the n type region. An n+ type region is disposed on the p type region. A gate insulating layer is disposed in the trench. A gate electrode is disposed on the gate insulating layer. A source electrode is disposed on an insulating layer disposed on the gate electrode, n+ type region, and p+ type region. A drain electrode is disposed at a substrate second surface. The n type region includes a first portion contacting the trench side surface and extending parallel to a substrate upper surface and a second portion contacting the first portion, separated from the trench side surface, and extending vertical to the substrate upper surface.
Abstract:
A semiconductor device is provided. The semiconductor device includes a n− type layer disposed at a first surface of a n+ type silicon carbide substrate and a trench disposed at the n− type layer. Additionally, a first gate electrode and a second gate electrode are disposed in the trench and separated from each other. A source electrode is insulated from the first gate electrode and the second gate electrode. Further, the semiconductor includes a drain electrode that is disposed at a second surface of the n+ type silicon carbide substrate, a first channel disposed adjacent to a side surface of the trench and a second channel disposed under the lower surface of the trench. The first channel and the second channel are separated from each other.
Abstract:
A method for bonding with a silver paste includes coating a semiconductor device or a substrate with the silver paste. The silver paste contains a plurality of silver particles and a plurality of bismuth particles. The method further includes disposing the semiconductor on the substrate and forming a bonding layer by heating the silver paste, wherein the semiconductor and the substrate are bonded to each other by the bonding layer.
Abstract:
A Schottky barrier diode includes: an n+ type of silicon carbide substrate; an n− type of epitaxial layer formed on a first surface of the n+ type of silicon carbide substrate; a plurality of p+ regions formed inside the n− type of epitaxial layer; a Schottky electrode formed in an upper portion of the n− type of epitaxial layer of an electrode region; and an ohmic electrode formed on a second surface of the n+ type of silicon carbide substrate, wherein the plurality of p+ regions are formed to be spaced apart from each other at a predetermined interval within the n− type of epitaxial layer.