摘要:
A method for fabricating a semiconductor device is disclosed. In one embodiment, the method may include providing a substrate; forming a gate structure including a first dummy gate over the substrate; removing the first dummy gate from the gate structure to form a trench; forming an interfacial layer, high-k dielectric layer, and capping layer to partially fill in the trench; forming a second dummy gate over the capping layer, wherein the second dummy gate fills the trench; and replacing the second dummy gate with a metal gate. In one embodiment, the method may include providing a substrate; forming an interfacial layer over the substrate; forming a high-k dielectric layer over the interfacial layer; forming an etch stop layer over the high-k dielectric layer; forming a capping layer including a low thermal budget silicon over the etch stop layer; forming a dummy gate layer over the capping layer; forming a gate structure; and performing a gate replacement process.
摘要:
A method of fabricating a semiconductor device is illustrated. A modified profile opening is formed on a substrate. The modified profile opening includes a first width proximate a surface of the substrate and a second width opposing the substrate. The second width is greater than the first width. A metal gate electrode is formed by filling the modified profile opening with a conductive material. A semiconductor device is also described, the device having a metal gate structure with a first width and a second, differing, width.
摘要:
An integrated circuit device and method for manufacturing the integrated circuit device is disclosed. The disclosed method provides improved control over a surface proximity and tip depth of integrated circuit devices. An exemplary integrated circuit device achieved by the method has a surface proximity of about 1 nm to about 3 nm and a tip depth of about 5 nm to about 10 nm. The integrated circuit device having such surface proximity and tip depth includes an epi source feature and an epi drain feature defined by a first facet and a second facet of a substrate in a first direction, such as a {111} crystallographic plane of the substrate, and a third facet of the substrate in a second direction, such as a { 100} crystallographic plane of the substrate.
摘要:
A method for cleaning a diffusion barrier over a gate dielectric of a metal-gate transistor over a substrate is provided. The method includes cleaning the diffusion barrier with a first solution including at least one surfactant. The amount of the surfactant of the first solution is about a critical micelle concentration (CMC) or more. The diffusion barrier is cleaned with a second solution. The second solution has a physical force to remove particles over the diffusion barrier. The second solution is substantially free from interacting with the diffusion barrier.
摘要:
An integrated circuit device and method for manufacturing the integrated circuit device is disclosed. The disclosed method provides improved control over a surface proximity and tip depth of integrated circuit device. In an embodiment, the method achieves improved control by forming a doped region and a lightly doped source and drain (LDD) region in a source and drain region of the device. The doped region is implanted with a dopant type opposite the LDD region.
摘要:
Via hole and trench structures and fabrication methods are disclosed. The structure includes a conductive layer in a dielectric layer, and a via structure in the dielectric layer contacting a portion of a surface of the conductive layer. The via structure includes the conductive liner contacting the portion of the surface of the first conductive layer. A trench structure is formed on the via structure in the dielectric without the conductive liner layer in the trench.
摘要:
The present invention relates to polypeptide targets for pathogenic bacteria. The invention also provides biochemical and biophysical characteristics of those polypeptides.
摘要:
An integrated circuit device and method for manufacturing the integrated circuit device is disclosed. The disclosed method provides improved control over a surface proximity and tip depth of integrated circuit device. In an embodiment, the method achieves improved control by forming a doped region and a lightly doped source and drain (LDD) region in a source and drain region of the device. The doped region is implanted with a dopant type opposite the LDD region.
摘要:
An integrated circuit device and method for manufacturing the integrated circuit device is disclosed. The disclosed method provides improved control over a surface proximity and tip depth of integrated circuit device. In an embodiment, the method achieves improved control by forming a lightly doped source and drain (LDD) region that acts as an etch stop. The LDD region may act as an etch stop during an etching process implemented to form a recess in the substrate that defines a source and drain region of the device.
摘要:
A method for fabricating an integrated device is disclosed. In an embodiment, a hard mask layer with a limited thickness is formed over a gate electrode layer. A treatment is provided to the hard mask layer to make the hard mask layer more resistant to a wet etch solution. Then, a patterning is provided on the treated hard mask layer and the gate electrode to from a gate structure.